Quantitative Local Bounds for Subcritical Semilinear Elliptic Equations

被引:0
作者
Matteo Bonforte
Gabriele Grillo
Juan Luis Vazquez
机构
[1] Universidad Autónoma de Madrid,Departamento de Matemáticas
[2] Politecnico di Milano,Dipartimento di Matematica
来源
Milan Journal of Mathematics | 2012年 / 80卷
关键词
35B45; 35B65; 35K55; 35K65; Local bounds; semilinear elliptic equations; regularity; Harnack inequality;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to prove local upper and lower bounds for weak solutions of semilinear elliptic equations of the form −Δu = cup, with 0 < p < ps = (d + 2)/(d - 2), defined on bounded domains of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{R}^d}, d \geq 3}$$\end{document}, without reference to the boundary behaviour. We give an explicit expression for all the involved constants. As a consequence, we obtain local Harnack inequalities with explicit constants, as well as gradient bounds.
引用
收藏
页码:65 / 118
页数:53
相关论文
共 54 条
  • [1] Bonforte M.(2012)Behaviour near extinction for the Fast Diffusion Equation on bounded domains J. Math. Pures Appl. 97 1-38
  • [2] Grillo G.(2010)Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations Advances in Math. 223 529-578
  • [3] Vázquez J.L.(1979)Remarks on the Schrdinger operator with singular complex potentials J. Math. Pures Appl. (9) 58 137-151
  • [4] Bonforte M.(1983)Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents Comm. Pure Appl. Math. 36 437-477
  • [5] Vázquez J.L.(1977)On a class of superlinear elliptic problems Comm. PDE 2 601-614
  • [6] Brezis H.(1987)Semilinear Elliptic Equations and Supercritical Growth J. Diff. Eq. 68 169-197
  • [7] Kato T.(2010)Regularity of minimizers of semilinear elliptic problems up to dimension 4 Comm. Pure Appl. Math. 63 1362-1380
  • [8] Brezis H.(1989)Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth Comm. Pure Appl. Math. 42 271-297
  • [9] Nirenberg L.(1989)On the influence of domain shape on the existence of large solutions of some superlinear problems Math. Ann. 285 647-669
  • [10] Brezis H.(1998)Superlinear problems on domains with holes of asymptotic shape and exterior problems Math. Z. 229 475-491