Locally conformally symplectic reduction of the cotangent bundle

被引:0
作者
Miron Stanciu
机构
[1] Institute of Mathematics “Simion Stoilow” of the Romanian Academy,Faculty of Mathematics and Computer Science
[2] University of Bucharest,undefined
来源
Annals of Global Analysis and Geometry | 2022年 / 61卷
关键词
Locally conformally symplectic; Contact manifold; Momentum map; Reduction; Foliation; Cotangent bundle; 53D20; 53D05;
D O I
暂无
中图分类号
学科分类号
摘要
In Stanciu (Ann Global Anal Geom 56:245-275, 2019), we introduced a reduction procedure for locally conformally symplectic manifolds at any regular value of the natural momentum mapping. We use this construction to prove an analogue of a well-known theorem in the symplectic setting about the reduction of cotangent bundles.
引用
收藏
页码:533 / 551
页数:18
相关论文
共 18 条
  • [1] Bazzoni G(2018)Locally conformally symplectic and Kahler geometry EMS Surv. Math. Sci. 5 129-154
  • [2] Belgun F(2019)Locally conformally symplectic convexity J. Geom. Phys. 135 235-252
  • [3] Goertsches O(2001)Reduction for locally conformal symplectic manifolds J. Geom. Phys. 37 262-271
  • [4] Petrecca D(1999)On the group of diffeomorphisms preserving a locally conformal symplectic structure Ann. Global Anal. Geom. 17 475-502
  • [5] Haller S(2019)A characterisation of toric LCK manifolds J. Symplectic Geom. 17 1297-1316
  • [6] Rybicki T(1943)A kind of even-dimensional differential geometry and its application to exterior calculus Amer. J. Math. 65 433-438
  • [7] Haller S(1983)Coadjoint orbits, vortices and Clebsch variables for incompressible fluids Physica D 7 305-323
  • [8] Rybicki T(1982)The Hamiltonian structure of the Maxwell-Vlasov equations Physica D 4 394-406
  • [9] Istrati N(1970)Topology and mechanics Inv. Math. 10 305-331
  • [10] Lee HC(1970)Topology and mechanics Inv. Math. 11 45-64