The Upper Critical Dimension of the Abelian Sandpile Model

被引:0
|
作者
V. B. Priezzhev
机构
[1] Joint Institute for Nuclear Research,Laboratory of Theoretical Physics
来源
关键词
self-organized criticality; sandpiles; spanning trees; intersection probabilities; upper critical dimension;
D O I
暂无
中图分类号
学科分类号
摘要
The existing estimation of the upper critical dimension of the Abelian Sandpile Model is based on a qualitative consideration of avalanches as self-avoiding branching processes. We find an exact representation of an avalanche as a sequence of spanning subtrees of two-component spanning trees. Using equivalence between chemical paths on the spanning tree and loop-erased random walks, we reduce the problem to determination of the fractal dimension of spanning subtrees. Then the upper critical dimension du=4 follows from Lawler's theorems for intersection probabilities of random walks and loop-erased random walks.
引用
收藏
页码:667 / 684
页数:17
相关论文
共 50 条
  • [31] Patterned and disordered continuous Abelian sandpile model
    Azimi-Tafreshi, N.
    Moghimi-Araghi, S.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [32] Multiple and inverse topplings in the Abelian Sandpile Model
    Caracciolo, S.
    Paoletti, G.
    Sportiello, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2012, 212 (01): : 23 - 44
  • [33] Boundary height fields in the Abelian sandpile model
    Piroux, G
    Ruelle, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (07): : 1451 - 1472
  • [34] The Limit Shape of the Leaky Abelian Sandpile Model
    Alevy, Ian
    Mkrtchyan, Sevak
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (16) : 12767 - 12802
  • [35] Multiple and inverse topplings in the Abelian Sandpile Model
    S. Caracciolo
    G. Paoletti
    A. Sportiello
    The European Physical Journal Special Topics, 2012, 212 : 23 - 44
  • [36] Exact height probabilities in the Abelian sandpile model
    Priezzhev, V.B.
    Physica Scripta T, 1993, T49A
  • [37] EXACT HEIGHT PROBABILITIES IN THE ABELIAN SANDPILE MODEL
    PRIEZZHEV, VB
    PHYSICA SCRIPTA, 1993, T49B : 663 - 666
  • [38] The Abelian Sandpile Model on a Random Binary Tree
    Redig, F.
    Ruszel, W. M.
    Saada, E.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (04) : 653 - 677
  • [39] The Abelian Sandpile Model on a Random Binary Tree
    F. Redig
    W. M. Ruszel
    E. Saada
    Journal of Statistical Physics, 2012, 147 : 653 - 677
  • [40] BREAKDOWN OF SIMPLE SCALING IN ABELIAN SANDPILE MODELS IN ONE-DIMENSION
    ALI, AA
    DHAR, D
    PHYSICAL REVIEW E, 1995, 51 (04) : R2705 - R2708