The Upper Critical Dimension of the Abelian Sandpile Model

被引:0
|
作者
V. B. Priezzhev
机构
[1] Joint Institute for Nuclear Research,Laboratory of Theoretical Physics
来源
关键词
self-organized criticality; sandpiles; spanning trees; intersection probabilities; upper critical dimension;
D O I
暂无
中图分类号
学科分类号
摘要
The existing estimation of the upper critical dimension of the Abelian Sandpile Model is based on a qualitative consideration of avalanches as self-avoiding branching processes. We find an exact representation of an avalanche as a sequence of spanning subtrees of two-component spanning trees. Using equivalence between chemical paths on the spanning tree and loop-erased random walks, we reduce the problem to determination of the fractal dimension of spanning subtrees. Then the upper critical dimension du=4 follows from Lawler's theorems for intersection probabilities of random walks and loop-erased random walks.
引用
收藏
页码:667 / 684
页数:17
相关论文
共 50 条
  • [1] The upper critical dimension of the Abelian Sandpile Model
    Priezzhev, VB
    JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (3-4) : 667 - 684
  • [2] Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension
    Lubeck, S
    Usadel, KD
    PHYSICAL REVIEW E, 1997, 56 (05): : 5138 - 5143
  • [3] Mean-field behavior of the sandpile model below the upper critical dimension
    Chessa, Alessandro
    Marinari, Enzo
    Vespignani, Alessandro
    Zapperi, Stefano
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (06):
  • [4] Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension
    Luebeck, S.
    Usadel, K.D.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 56 (5 -A pt A): : 5138 - 5143
  • [5] Mean-field behavior of the sandpile model below the upper critical dimension
    Chessa, A
    Marinari, E
    Vespignani, A
    Zapperi, S
    PHYSICAL REVIEW E, 1998, 57 (06): : R6241 - R6244
  • [6] Formation of avalanches and critical exponents in an Abelian sandpile model
    Priezzhev, VB
    Ktitarev, DV
    Ivashkevich, EV
    PHYSICAL REVIEW LETTERS, 1996, 76 (12) : 2093 - 2096
  • [7] ABELIAN SANDPILE MODEL
    CHAU, HF
    PHYSICAL REVIEW E, 1993, 47 (06) : R3815 - R3817
  • [8] Logarithmic corrections of the avalanche distributions of sandpile models at the upper critical dimension
    Lubeck, S
    PHYSICAL REVIEW E, 1998, 58 (03): : 2957 - 2964
  • [9] ABELIAN SANDPILE MODEL - COMMENT
    PRASAD, MA
    BHATIA, DP
    ARORA, D
    PHYSICAL REVIEW E, 1994, 49 (02): : 1779 - 1780
  • [10] On the predictability of the abelian sandpile model
    Andres Montoya, J.
    Mejia, Carolina
    NATURAL COMPUTING, 2022, 21 (01) : 69 - 79