Semiconcavity estimates for viscous Hamilton–Jacobi equations

被引:0
作者
Thomas Strömberg
机构
[1] Luleå University of Technology,Department of Mathematics
来源
Archiv der Mathematik | 2010年 / 94卷
关键词
35K55; 35B45; 35K15; 49L25; Viscous Hamilton–Jacobi equation; Semiconcavity; Hessian estimates;
D O I
暂无
中图分类号
学科分类号
摘要
We present sharp Hessian estimates of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D^2 S^\varepsilon(t,x)\leq g(t)I}$$\end{document} for the solution of the viscous Hamilton–Jacobi equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{ll}S^\varepsilon_t+\frac{1}{2}|DS^\varepsilon|^2+V(x)-\varepsilon\Delta S^\varepsilon = 0\quad {\rm in} \, Q_T=(0,T]\times\, {\mathbb {R}^n}, \\ \qquad \qquad \qquad \qquad \quad \, S^\varepsilon(0,x) = S_0(x)\quad{\rm in}\, {\mathbb {R}^n}.\end{array}$$\end{document}The smallest possible positive function g(t) is explicitly given in terms of the semiconvexity and semiconcavity parameters of V and S0, respectively. The optimal g does not depend on the viscosity parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon >0 }$$\end{document} . The potential V and the initial function S0 are allowed to grow quadratically.
引用
收藏
页码:579 / 589
页数:10
相关论文
共 19 条
  • [1] Alvarez O.(1997)Convex viscosity solutions and state constraints J. Math. Pures Appl. (9) 76 265-288
  • [2] Lasry J.-M.(1967)Uniqueness of positive solutions of parabolic equations with unbounded coefficients Colloq. Math. 18 125-135
  • [3] Lions P.-L.(1967)Parabolic equations with unbounded coefficients J. Differential Equations 3 1-14
  • [4] Aronson D.G.(2003)On the system of Hamilton–Jacobi and transport equations arising in geometrical optics Comm. Partial Differential Equations 28 1085-1111
  • [5] Besala P.(1992)User’s guide to viscosity solutions of second order partial differential equations Bull. Amer. Math. Soc. (N.S.) 27 1-67
  • [6] Aronson D.G.(2005)Hessian estimates for viscous Hamilton-Jacobi equations with the Ornstein-Uhlenbeck operator Differential Integral Equations 18 1383-1396
  • [7] Besala P.(2002)Second-order linear equations of parabolic type J. Math. Sci. (New York) 108 435-542
  • [8] Ben Moussa B.(1967)Generalized solutions of nonlinear equations of the first order with several independent variables. II. Mat Sb. (N.S.) 72 108-134
  • [9] Kossioris G.T.(2006)Global solutions of inhomogeneous Hamilton-Jacobi equations J. Anal. Math. 99 355-396
  • [10] Crandall M.G.(undefined)undefined undefined undefined undefined-undefined