Rigidity and Infinitesimal Deformability of Ricci Solitons

被引:0
作者
Klaus Kröncke
机构
[1] Universität Regensburg,Fakultät für Mathematik
[2] Universität Potsdam,Institut für Mathematik
来源
The Journal of Geometric Analysis | 2016年 / 26卷
关键词
Ricci solitons; Moduli space; Linearized equation ; Integrability; 53C25; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an obstruction against the integrability of certain infinitesimal solitonic deformations is given. Using this obstruction, we show that the complex projective spaces of even complex dimension are rigid as Ricci solitons although they have infinitesimal solitonic deformations.
引用
收藏
页码:1795 / 1807
页数:12
相关论文
共 50 条
[31]   ON VOLUME GROWTH OF GRADIENT STEADY RICCI SOLITONS [J].
Wei, Guofang ;
Wu, Peng .
PACIFIC JOURNAL OF MATHEMATICS, 2013, 265 (01) :233-241
[32]   Ricci solitons and odd-dimensional spheres [J].
Jong Taek Cho .
Monatshefte für Mathematik, 2010, 160 :347-357
[33]   Rigidity Results for Riemann and Schouten Solitons [J].
Tokura, Willian ;
Barboza, Marcelo ;
Batista, Elismar ;
Menezes, Ilton .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
[34]   On a dichotomy of the curvature decay of steady Ricci solitons [J].
Chan, Pak-Yeung ;
Zhu, Bo .
ADVANCES IN MATHEMATICS, 2022, 404
[35]   ANALYTIC AND GEOMETRIC PROPERTIES OF GENERIC RICCI SOLITONS [J].
Catino, G. ;
Mastrolia, P. ;
Monticelli, D. D. ;
Rigoli, M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (11) :7533-7549
[36]   Conformally Flat Siklos Metrics Are Ricci Solitons [J].
Calvaruso, Giovanni .
AXIOMS, 2020, 9 (02)
[37]   Some characterizations of expanding and steady Ricci solitons [J].
Santos, Marcio S. .
GLASGOW MATHEMATICAL JOURNAL, 2023, 65 (02) :446-449
[38]   SOME GEOMETRIC ANALYSIS ON GENERIC RICCI SOLITONS [J].
Mastrolia, Paolo ;
Rigoli, Marco ;
Rimoldi, Michele .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (03)
[39]   Stability and moduli space of generalized Ricci solitons [J].
Lee, Kuan-Hui .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 240
[40]   eta-RICCI SOLITONS ON KENMOTSU MANIFOLDS [J].
Eyasmin, Sabina ;
Chowdhury, Partha Roy ;
Baishya, Kanak Kanti .
HONAM MATHEMATICAL JOURNAL, 2018, 40 (02) :367-376