Rigidity and Infinitesimal Deformability of Ricci Solitons

被引:0
作者
Klaus Kröncke
机构
[1] Universität Regensburg,Fakultät für Mathematik
[2] Universität Potsdam,Institut für Mathematik
来源
The Journal of Geometric Analysis | 2016年 / 26卷
关键词
Ricci solitons; Moduli space; Linearized equation ; Integrability; 53C25; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an obstruction against the integrability of certain infinitesimal solitonic deformations is given. Using this obstruction, we show that the complex projective spaces of even complex dimension are rigid as Ricci solitons although they have infinitesimal solitonic deformations.
引用
收藏
页码:1795 / 1807
页数:12
相关论文
共 50 条
[1]   Rigidity and Infinitesimal Deformability of Ricci Solitons [J].
Kroencke, Klaus .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (03) :1795-1807
[2]   Infinitesimal Harmonic Transformations and Ricci Solitons on Complete Riemannian Manifolds [J].
Stepanov, S. E. ;
Tsyganok, I. I. .
RUSSIAN MATHEMATICS, 2010, 54 (03) :84-87
[3]   RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS [J].
Ayar, Gulhan ;
Yildirim, Mustafa .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03) :503-510
[4]   On Gradient Ricci Solitons [J].
Munteanu, Ovidiu ;
Sesum, Natasa .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) :539-561
[5]   On Gradient Ricci Solitons [J].
Ovidiu Munteanu ;
Natasa Sesum .
Journal of Geometric Analysis, 2013, 23 :539-561
[6]   Generalized Ricci Solitons [J].
Nurowski, Pawel ;
Randall, Matthew .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) :1280-1345
[7]   Generalized Ricci Solitons [J].
Paweł  Nurowski ;
Matthew Randall .
The Journal of Geometric Analysis, 2016, 26 :1280-1345
[8]   Singular Ricci Solitons and Their Stability under the Ricci Flow [J].
Alexakis, Spyros ;
Chen, Dezhong ;
Fournodavlos, Grigorios .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (12) :2123-2172
[9]   Ends of Gradient Ricci Solitons [J].
Ovidiu Munteanu ;
Jiaping Wang .
The Journal of Geometric Analysis, 2022, 32
[10]   Ricci Solitons in Kenmotsu Manifold [J].
Nagaraja, H. G. ;
Venu, K. .
JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2016, 8 (01) :29-36