A p-specific spectral multiplier theorem with sharp regularity bound for Grushin operators

被引:0
作者
Lars Niedorf
机构
[1] Mathematisches Seminar,
[2] Christian-Albrechts-Universität zu Kiel,undefined
来源
Mathematische Zeitschrift | 2022年 / 301卷
关键词
Grushin operator; Spectral multiplier; Mikhlin–Hörmander multiplier; Bochner–Riesz mean; Restriction type estimate; Primary 43A85; 42B15; Secondary 47F05;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent work, Chen and Ouhabaz proved a p-specific Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spectral multiplier theorem for the Grushin operator acting on Rd1×Rd2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{d_1}\times {\mathbb {R}}^{d_2}$$\end{document} which is given by L=-∑j=1d1∂xj2-(∑j=1d1|xj|2)∑k=1d2∂yk2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} L =-\sum _{j=1}^{d_1} \partial _{x_j}^2 - \Bigg ( \sum _{j=1}^{d_1} |x_j|^2\Bigg ) \sum _{k=1}^{d_2}\partial _{y_k}^2. \end{aligned}$$\end{document}Their approach yields an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spectral multiplier theorem within the range 1<p≤min{2d1/(d1+2),2(d2+1)/(d2+3)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< p\le \min \{ 2d_1/(d_1+2), 2(d_2+1)/(d_2+3) \}$$\end{document} under a regularity condition on the multiplier which is sharp only when d1≥d2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1\ge d_2$$\end{document}. In this paper, we improve on this result by proving Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-boundedness under the expected sharp regularity condition s>(d1+d2)(1/p-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>(d_1+d_2)(1/p-1/2)$$\end{document}. Our approach avoids the usage of weighted restriction type estimates which played a key role in the work of Chen and Ouhabaz, and is rather based on a careful analysis of the underlying sub-Riemannian geometry and restriction type estimates where the multiplier is truncated along the spectrum of the Laplacian on Rd2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{d_2}$$\end{document}.
引用
收藏
页码:4153 / 4173
页数:20
相关论文
共 11 条