Superconvergence results of iterated projection methods for linear Volterra integral equations of second kind

被引:0
|
作者
Moumita Mandal
Gnaneshwar Nelakanti
机构
[1] Indian Institute of Technology Kharagpur,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2018年 / 57卷
关键词
Volterra integral equations; Smooth kernels; Projection methods; Piecewise polynomials; superconvergence rates; 45B05; 45G10; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop the iteration techniques for Galerkin and collocation methods for linear Volterra integral equations of the second kind with a smooth kernel, using piecewise constant functions. We prove that the convergence rates for every step of iteration improve by order O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h^{2})$$\end{document} for Galerkin method, whereas in collocation method, it is improved by O(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h)$$\end{document} in infinity norm. We also show that the system to be inverted remains same for every iteration as in the original projection methods. We illustrate our results by numerical examples.
引用
收藏
页码:321 / 332
页数:11
相关论文
共 50 条