Superconvergence results of iterated projection methods for linear Volterra integral equations of second kind

被引:0
|
作者
Moumita Mandal
Gnaneshwar Nelakanti
机构
[1] Indian Institute of Technology Kharagpur,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2018年 / 57卷
关键词
Volterra integral equations; Smooth kernels; Projection methods; Piecewise polynomials; superconvergence rates; 45B05; 45G10; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop the iteration techniques for Galerkin and collocation methods for linear Volterra integral equations of the second kind with a smooth kernel, using piecewise constant functions. We prove that the convergence rates for every step of iteration improve by order O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h^{2})$$\end{document} for Galerkin method, whereas in collocation method, it is improved by O(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h)$$\end{document} in infinity norm. We also show that the system to be inverted remains same for every iteration as in the original projection methods. We illustrate our results by numerical examples.
引用
收藏
页码:321 / 332
页数:11
相关论文
共 50 条
  • [31] Solving Volterra integral equations of the second kind by wavelet-Galerkin scheme
    Saberi-Nadjafi, J.
    Mehrabinezhad, M.
    Akbari, H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (11) : 1536 - 1547
  • [32] Superconvergence of system of Volterra integral equations by spectral approximation method
    Chakraborty, Samiran
    Nelakanti, Gnaneshwar
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 441
  • [33] Multi-projection methods for Fredholm integral equations of the first kind
    Patel, Subhashree
    Panigrahi, Bijaya Laxmi
    Nelakanti, Gnaneshwar
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (04) : 722 - 744
  • [34] Galerkin spectral method for linear second-kind Volterra integral equations with weakly singular kernels on large intervals
    Remili, Walid
    Rahmoune, Azedine
    Li, Chenkuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2329 - 2344
  • [35] Some extended explicit Bel'tyukov pairs for Volterra integral equations of the second kind
    Sharp, PW
    Verner, JH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) : 347 - 359
  • [36] Pouzet-Runge-Kutta-Chebyshev method for Volterra integral equations of the second kind
    Zhang, Limei
    Ma, Fuming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 323 - 331
  • [37] Superconvergence results for non-linear Hammerstein integral equations on unbounded domain
    Ritu Nigam
    Nilofar Nahid
    Samiran Chakraborty
    Gnaneshwar Nelakanti
    Numerical Algorithms, 2023, 94 : 1243 - 1279
  • [38] Superconvergence results for non-linear Hammerstein integral equations on unbounded domain
    Nigam, Ritu
    Nahid, Nilofar
    Chakraborty, Samiran
    Nelakanti, Gnaneshwar
    NUMERICAL ALGORITHMS, 2023, 94 (03) : 1243 - 1279
  • [39] Superconvergence of Iterated Galerkin Method for a Class of Nonlinear Fredholm Integral Equations
    Das, Payel
    Nahid, Nilofar
    Nelakanti, Gnaneshwar
    RECENT ADVANCES IN INTELLIGENT INFORMATION SYSTEMS AND APPLIED MATHEMATICS, 2020, 863 : 53 - 74
  • [40] Galerkin and Iterated Galerkin Methods for Linear Second Kind Weakly Singular Volterra Integral Equation with Mixed-Type KernelsGalerkin and Iterated Galerkin MethodsK. M. Malav et al.
    Krishna Murari Malav
    Kapil Kant
    Joydip Dhar
    Mediterranean Journal of Mathematics, 2025, 22 (3)