Superconvergence results of iterated projection methods for linear Volterra integral equations of second kind

被引:0
|
作者
Moumita Mandal
Gnaneshwar Nelakanti
机构
[1] Indian Institute of Technology Kharagpur,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2018年 / 57卷
关键词
Volterra integral equations; Smooth kernels; Projection methods; Piecewise polynomials; superconvergence rates; 45B05; 45G10; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop the iteration techniques for Galerkin and collocation methods for linear Volterra integral equations of the second kind with a smooth kernel, using piecewise constant functions. We prove that the convergence rates for every step of iteration improve by order O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h^{2})$$\end{document} for Galerkin method, whereas in collocation method, it is improved by O(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h)$$\end{document} in infinity norm. We also show that the system to be inverted remains same for every iteration as in the original projection methods. We illustrate our results by numerical examples.
引用
收藏
页码:321 / 332
页数:11
相关论文
共 50 条
  • [21] ON THE SOLUTION OF VOLTERRA INTEGRAL EQUATIONS OF THE SECOND KIND WITH A BULGE FUNCTION BY ADM
    Haarsa, P.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2021, 25 (02): : 179 - 188
  • [22] On Discontinuous and Continuous Approximations to Second-Kind Volterra Integral Equations
    Liang, Hui
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (01): : 91 - 124
  • [23] Pell–Lucas polynomial method for Volterra integral equations of the second kind
    Alpha Peter Lukonde
    Duygu Donmez Demir
    Homan Emadifar
    Masoumeh Khademi
    Hooshmand Azizi
    Afrika Matematika, 2023, 34
  • [24] AN INNOVATIVE ITERATIVE APPROACH TO SOLVING VOLTERRA INTEGRAL EQUATIONS OF SECOND KIND
    Hussein, Mohammed Abdulshareef
    Jassim, Hassan Kamil
    Jassim, Ali Kareem
    ACTA POLYTECHNICA, 2024, 64 (02) : 87 - 102
  • [25] Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm-Hammerstein integral equations
    Mandal, Moumita
    Nelakanti, Gnaneshwar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 349 : 114 - 131
  • [26] Iteration methods for Fredholm integral equations of the second kind
    Long, Guangqing
    Nelakanti, Gnaneshwar
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (06) : 886 - 894
  • [27] Implementation of general linear methods for Volterra integral equations
    Abdi, A.
    Conte, D.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 386
  • [28] Strong superconvergence of the Euler-Maruyama method for linear stochastic Volterra integral equations
    Liang, Hui
    Yang, Zhanwen
    Gao, Jianfang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 447 - 457
  • [29] A Novel Method for Solving Second Kind Volterra Integral Equations with Discontinuous Kernel
    Noeiaghdam, Samad
    Micula, Sanda
    MATHEMATICS, 2021, 9 (17)
  • [30] Pell-Lucas polynomial method for Volterra integral equations of the second kind
    Lukonde, Alpha Peter
    Demir, Duygu Donmez
    Emadifar, Homan
    Khademi, Masoumeh
    Azizi, Hooshmand
    AFRIKA MATEMATIKA, 2023, 34 (03)