Superconvergence results of iterated projection methods for linear Volterra integral equations of second kind

被引:0
|
作者
Moumita Mandal
Gnaneshwar Nelakanti
机构
[1] Indian Institute of Technology Kharagpur,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2018年 / 57卷
关键词
Volterra integral equations; Smooth kernels; Projection methods; Piecewise polynomials; superconvergence rates; 45B05; 45G10; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop the iteration techniques for Galerkin and collocation methods for linear Volterra integral equations of the second kind with a smooth kernel, using piecewise constant functions. We prove that the convergence rates for every step of iteration improve by order O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h^{2})$$\end{document} for Galerkin method, whereas in collocation method, it is improved by O(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(h)$$\end{document} in infinity norm. We also show that the system to be inverted remains same for every iteration as in the original projection methods. We illustrate our results by numerical examples.
引用
收藏
页码:321 / 332
页数:11
相关论文
共 50 条
  • [1] Superconvergence results of iterated projection methods for linear Volterra integral equations of second kind
    Mandal, Moumita
    Nelakanti, Gnaneshwar
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) : 321 - 332
  • [2] Superconvergence results of Legendre spectral projection methods for Volterra integral equations of second kind
    Mandal, Moumita
    Nelakanti, Gnaneshwar
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4007 - 4022
  • [3] Superconvergence results of Legendre spectral projection methods for Volterra integral equations of second kind
    Moumita Mandal
    Gnaneshwar Nelakanti
    Computational and Applied Mathematics, 2018, 37 : 4007 - 4022
  • [4] Superconvergence results for linear second-kind Volterra integral equations
    Mandal, Moumita
    Nelakanti, Gnaneshwar
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) : 247 - 260
  • [5] Superconvergence results for linear second-kind Volterra integral equations
    Moumita Mandal
    Gnaneshwar Nelakanti
    Journal of Applied Mathematics and Computing, 2018, 57 : 247 - 260
  • [6] Legendre spectral projection methods for linear second kind Volterra integral equations with weakly singular kernels
    Chakraborty, Samiran
    Kant, Kapil
    Nelakanti, Gnaneshwar
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1377 - 1397
  • [7] Superconvergence results for the nonlinear Fredholm–Hemmerstein integral equations of second kind
    Moumita Mandal
    Gnaneshwar Nelakanti
    The Journal of Analysis, 2021, 29 : 67 - 87
  • [8] Superconvergence results for the nonlinear Fredholm-Hemmerstein integral equations of second kind
    Mandal, Moumita
    Nelakanti, Gnaneshwar
    JOURNAL OF ANALYSIS, 2021, 29 (01): : 67 - 87
  • [9] Superconvergence of interpolated collocation solutions for weakly singular Volterra integral equations of the second kind
    Qiumei Huang
    Min Wang
    Computational and Applied Mathematics, 2021, 40
  • [10] Projection and multi-projection methods for second kind Volterra-Hammerstein integral equation
    Mandal, Moumita
    Kant, Kapil
    Nelakanti, Gnaneshwar
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 275 - 291