Quantum Thermal Effect of Nonstationary Kerr-Newman Black Hole

被引:0
作者
Xuejun Yang
Han He
Zheng Zhao
机构
[1] Beijing Normal University,Dept of Physics
来源
General Relativity and Gravitation | 2003年 / 35卷
关键词
Black hole; Hawking radiation; entropy;
D O I
暂无
中图分类号
学科分类号
摘要
The Hawking radiation and the entropy of non-stationary Kerr-Newman black hole whose metric changes slowly are calculated via the method of Damour etc. and the thin film brick-wall model. First, we obtain the Hawking radiation temperature and the thermal spectrum formula. Second, we get the entropy density at every point of the horizon surface as well as the total entropy of the black hole, which is just the Bekenstein-Hawking entropy and relies on the notion of the local equilibrium crucially that can be met if the evaporation and the accretion of the black hole is negligible. The results show that the temperature of the event horizon depends on the time and the angle, and the entropy of the non-stationary black hole is also proportional to the horizon area with appropriate cutoff relationship as in the case of stationary black holes.
引用
收藏
页码:579 / 594
页数:15
相关论文
共 69 条
[1]  
Hawking S. W.(1974)undefined Nature, (London) 248 30-undefined
[2]  
Hawking S. W.(1975)undefined Commun. Math. Phys. 43 199-undefined
[3]  
Bekenstein J. D.(1973)undefined Phys. Rev. D 7 2333-undefined
[4]  
Bekenstein J. D.(1974)undefined Phys. Rev. D 9 3292-undefined
[5]  
York J. W.(1983)undefined Phys. Rev. D 28 2929-undefined
[6]  
Frolov V.(1993)undefined Phys. Rev. D 48 4545-undefined
[7]  
Novikov I.(1998)undefined Phys. Rev. Lett. 80 904-undefined
[8]  
Ashtekar A.(1996)undefined Phys. Lett. B 379 99-undefined
[9]  
Baez J.(1996)undefined Phys. Rev. Lett. 77 428-undefined
[10]  
Corichi A.(1996)undefined Phys. Rev. Lett. 77 430-undefined