Global Dynamics and Optimal Control of a Two-Strain Epidemic Model with Non-monotone Incidence and Saturated Treatment

被引:0
作者
Pritam Saha
Bapin Mondal
Uttam Ghosh
机构
[1] University of Calcutta,Department of Applied Mathematics
来源
Iranian Journal of Science | 2023年 / 47卷
关键词
Two strain; Non-monotone incidence; Saturated treatment; Lyapunov function; Optimal control;
D O I
暂无
中图分类号
学科分类号
摘要
This article deals with the study of a biological feasible two-strain epidemic model considering six compartments with non-monotone incidence and saturated treatment. The model has four types of equilibria, namely disease-free equilibrium, strain-1 endemic equilibrium, strain-2 endemic equilibrium and co-infected endemic equilibrium. We have shown local and global stability of different equilibria in terms of basic reproduction numbers of the system (R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_0 $$\end{document}) and for two strains (namely R0′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0^{'}$$\end{document} and R0′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0^{''}$$\end{document}). If both R0′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0^{'}$$\end{document} and R0′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0^{''}$$\end{document} are less than unity, then the disease eradicates from the community. It has been also established that global stability of different endemic equilibria depends on values of both R0′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0^{'}$$\end{document}, R0′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0^{''}$$\end{document} and also on strain inhibitory effect reproduction numbers (Rα1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha _1}$$\end{document} or/and Rα2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha _2}$$\end{document}). We have also verified the principle of exclusive competition, i.e., strain with a higher reproduction number dominates other strains with a lower reproduction number. We have established that the model experiences transcritical bifurcation depending on values of the reproduction numbers. Lastly, we have formulated a time-dependent optimal control problem using Pontryagin’s maximum principle to minimize the number of infected populations and also to reduce the implemented cost for applied treatment control. Numerical simulations are carried out to establish the effect of model parameters on disease spreading as well as the effect of controls.
引用
收藏
页码:1575 / 1591
页数:16
相关论文
共 108 条
  • [1] Baba IA(2017)Global stability analysis of two-strain epidemic model with bilinear and non-monotone incidence rates Eur Phys J Plus 132 208-288
  • [2] Hincal E(2019)Lyapunov function and global stability for a two-strain SEIR epidemic model with bilinear and non-monotone incidence Int J Biomath 12 1950021-190
  • [3] Bentaleb D(2020)Analysis and optimal control of a multistrain SEIR epidemic model with saturated incidence rate and treatment Differ Equ Dyn Syst 14 275-1371
  • [4] Amine S(2004)An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it, reprint Rev Med Virol 27 179-46
  • [5] Bentaleb D(1989)A competitive exclusion principle for pathogen virulence J Math Biol 12 1365-61
  • [6] Harroudi S(2006)Microbial translocation is a cause of systemic immune activation in chronic HIV infection Nat Med 16 30-64
  • [7] Amine S(2011)On the backward bifurcation of a vaccination model with nonlinear incidence Nonlinear Anal 42 43-544
  • [8] Allali K(1978)A generalization of the Kermack–Mckendric deterministic epidemic model Math Biosci 167 47-30
  • [9] Bernoulli D(2023)ReLU-type Hopfield neural network with analog hardware implementation Chaos Solitons Fractals 31 13-496
  • [10] Bremermann HJ(2021)Nonlinear dynamical behavior of an SEIR mathematical model: effect of information and saturated treatment Chaos 58 54-721