The Resultant on Compact Riemann Surfaces

被引:0
作者
Björn Gustafsson
Vladimir G. Tkachev
机构
[1] KTH,Mathematical Department
[2] Volgograd State University,Mathematical Department
来源
Communications in Mathematical Physics | 2009年 / 286卷
关键词
Riemann Surface; Meromorphic Function; Toeplitz Operator; Compact Riemann Surface; Admissible Pair;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a notion of the resultant of two meromorphic functions on a compact Riemann surface and demonstrate its usefulness in several respects. For example, we exhibit several integral formulas for the resultant, relate it to potential theory and give explicit formulas for the algebraic dependence between two meromorphic functions on a compact Riemann surface. As a particular application, the exponential transform of a quadrature domain in the complex plane is expressed in terms of the resultant of two meromorphic functions on the Schottky double of the domain.
引用
收藏
页码:313 / 358
页数:45
相关论文
共 60 条
[1]  
Aharonov D.(1976)Domains in which analytic functions satisfy quadrature identities J. Analyse Math. 30 39-73
[2]  
Shapiro H.S.(1994)Formulas for the evaluation of Toeplitz determinants with rational generating functions Math. Nachr. 170 5-18
[3]  
Basor E.L.(1961)Determinants of a certain class of non-hermitian Toeplitz matrices Math. Scand. 9 122-128
[4]  
Forrester P.J.(1999)On the Bezout construction of the resultant. Polynomial elimination – algorithms and applications J. Symbolic Comput. 28 45-88
[5]  
Baxter G.(2000)Koszul Complexes, Differential Operators, and the Weil-Tate Reciprocity Law J. Algebra 230 89-100
[6]  
Schmidt P.(1997)Remarkable matrices and trigonometric identities J. Comput. Appl. Math. 83 127-130
[7]  
Bikker P.(1999)Remarkable Matrices and Trigonometric Identities. II Commun. Appl. Math. 3 267-270
[8]  
Uteshev A.Yu.(1974)An exponential formula for determining functions Indiana Univ. Math. J. 23 1031-1042
[9]  
Brylinski J.-L.(1998)Residues and resultants J. Math. Sci. Univ. Tokyo 5 119-148
[10]  
Previato E.(1975)Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function Trans. Amer. Math. Soc. 206 224-245