共 50 条
Crystal-facet-dependent surface transformation dictates the oxygen evolution reaction activity in lanthanum nickelate
被引:16
|作者:
Fuengerlings, Achim
[1
]
Wohlgemuth, Marcus
[2
,3
]
Antipin, Denis
[4
]
van der Minne, Emma
[5
]
Kiens, Ellen Marijn
[5
]
Villalobos, Javier
[4
]
Risch, Marcel
[4
]
Gunkel, Felix
[2
,3
]
Pentcheva, Rossitza
[1
]
Baeumer, Christoph
[5
]
机构:
[1] Univ Duisburg Essen, Theoret Phys & Ctr Nanointegrat CENIDE, Dept Phys, Lotharstr 1, D-47057 Duisburg, Germany
[2] Forschungszentrum Juelich, Peter Gruenberg Inst, Wilhelm Johnen Str, D-52428 Julich, Germany
[3] Forschungszentrum Juelich, JARA FIT, Wilhelm Johnen Str, D-52428 Julich, Germany
[4] Helmholtz Zentrum Berlin Mat & Energie GmbH, Nachwuchsgrp Gestaltung Sauerstoffentwicklungsmech, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[5] Univ Twente, MESA Inst Nanotechnol, Fac Sci & Technol, Hallenweg 15, NL-7522 Enschede, Netherlands
基金:
欧洲研究理事会;
关键词:
D O I:
10.1038/s41467-023-43901-z
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Electrocatalysts are the cornerstone in the transition to sustainable energy technologies and chemical processes. Surface transformations under operation conditions dictate the activity and stability. However, the dependence of the surface structure and transformation on the exposed crystallographic facet remains elusive, impeding rational catalyst design. We investigate the (001), (110) and (111) facets of a LaNiO3-delta electrocatalyst for water oxidation using electrochemical measurements, X-ray spectroscopy, and density functional theory calculations with a Hubbard U term. We reveal that the (111) overpotential is approximate to 30-60 mV lower than for the other facets. While a surface transformation into oxyhydroxide-like NiOO(H) may occur for all three orientations, it is more pronounced for (111). A structural mismatch of the transformed layer with the underlying perovskite for (001) and (110) influences the ratio of Ni2+ and Ni3+ to Ni4+ sites during the reaction and thereby the binding energy of reaction intermediates, resulting in the distinct catalytic activities of the transformed facets. The development of active and stable catalysts for water splitting requires understanding of the surface transformations that occur during the reaction. Here, the authors report how the transformations and the activity depend on the exposed crystal facet using spectroscopy and ab initio calculations.
引用
收藏
页数:13
相关论文