CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}\mathcal{P} $$\end{document} violation with an unbroken CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}\mathcal{P} $$\end{document} transformation

被引:0
作者
Michael Ratz
Andreas Trautner
机构
[1] University of California,Department of Physics and Astronomy
[2] Bethe Center for Theoretical Physics und Physikalisches Institut der Universität Bonn,undefined
关键词
CP violation; Discrete Symmetries; Space-Time Symmetries;
D O I
10.1007/JHEP02(2017)103
中图分类号
学科分类号
摘要
A CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}\mathcal{P} $$\end{document} conserving SU(3) gauge theory is spontaneously broken to T7 by the vacuum expectation value (VEV) of a 15-plet. Even though the SU(3)-CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}\mathcal{P} $$\end{document} transformation is not broken by the VEV, the theory exhibits physical CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}\mathcal{P} $$\end{document} violation in the broken phase. This is because the SU(3)-CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}\mathcal{P} $$\end{document} transformation corresponds to the unique order-two outer automorphism of T7, which is not a physical CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}\mathcal{P} $$\end{document} transformation for the T7 states, and there is no other possible CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}\mathcal{P} $$\end{document} transformation. We explicitly demonstrate that CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}\mathcal{P} $$\end{document} is violated by calculating a CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}\mathcal{P} $$\end{document} odd decay asymmetry in the broken phase. This scenario provides us with a natural protection for topological vacuum terms, ensuring that θGμνG˜μν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \theta {G}_{\mu \nu }{\tilde{G}}^{\mu \nu } $$\end{document} is absent even though CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}\mathcal{P} $$\end{document} is violated for the physical states of the model.
引用
收藏
相关论文
共 90 条
[1]  
Christenson JH(1964)Evidence for the 2π Decay of the Phys. Rev. Lett. 13 138-undefined
[2]  
Cronin JW(2017) Meson JHEP 01 087-undefined
[3]  
Fitch VL(1973)Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity Prog. Theor. Phys. 49 652-undefined
[4]  
Turlay R(1962)CP Violation in the Renormalizable Theory of Weak Interaction Prog. Theor. Phys. 28 870-undefined
[5]  
Esteban I(1967)Remarks on the unified model of elementary particles Pisma Zh. Eksp. Teor. Fiz. 5 32-undefined
[6]  
Gonzalez-Garcia MC(2013)Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the Universe JHEP 04 122-undefined
[7]  
Maltoni M(2014)CP and Discrete Flavour Symmetries Nucl. Phys. B 883 267-undefined
[8]  
Martinez-Soler I(2002)CP Violation from Finite Groups Int. J. Theor. Phys. 41 753-undefined
[9]  
Schwetz T(2009)Discrete symmetries as automorphisms of the proper Poincaré group Phys. Lett. B 681 444-undefined
[10]  
Kobayashi M(2015)Group Theoretical Origin of CP-violation Phys. Rev. D 92 036007-undefined