Effects of artificial aging on physiological quality and cell ultrastructure of maize (Zea mays L.)

被引:0
|
作者
Yuanzhu Xu
Pingan Ma
Zhipeng Niu
Bangbang Li
Yangyong Lv
Shan Wei
Yuansen Hu
机构
[1] Henan University of Technology,College of Biological Engineering
来源
关键词
Maize; Artificial aging; ROS; Physiological quality; Cell ultrastructure;
D O I
暂无
中图分类号
学科分类号
摘要
‘Qiule 368’ (flour maize) and ‘Zhengdan 958’ (flint maize) seeds were artificially aged at 46 °C and 95% relative humidity to investigate the changes in physiological quality of maize seeds during aging. The vigor of the seeds, their reactive oxygen species (ROS) content, cell membrane status, antioxidant enzyme system, and cellular ultrastructure were all investigated. The results showed that the germination energy, germination rate, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities decreased during artificial aging, whereas the content of malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide anion (O2·–), and carbonyl protein as well as relative electrical conductivity (REC) increased during artificial aging. SOD and CAT activities showed highly significant negative correlation with aging time (p < 0.01), MDA, H2O2, O2·– content and REC showed highly significant positive correlation with aging time (p < 0.01), whereas POD activity showed significant negative correlation with aging time (p < 0.05). After aging, the cell membrane ruptured, and negative changes in amyloplast and protein bodies and in liposomes were all observed. This study provided guidelines for the meaningful study of changes in maize seed physiological quality during storage.
引用
收藏
页码:615 / 626
页数:11
相关论文
共 50 条
  • [21] EVALUATION OF DROUGHT TOLERANCE IN MAIZE (ZEA MAYS L.) USING PHYSIOLOGICAL INDICES
    Tahir, Saba
    Zafar, Sara
    Ashraf, M. Yasin
    Perveen, Shagufta
    Mahmood, Saqib
    PAKISTAN JOURNAL OF BOTANY, 2023, 55 (03) : 843 - 849
  • [22] Physiological Responses of Contrasting Maize (Zea mays L.) Hybrids to Repeated Drought
    Kraenzlein, Markus
    Geilfus, Christoph-Martin
    Franzisky, Bastian L.
    Zhang, Xudong
    Wimmer, Monika A.
    Zoerb, Christian
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (07) : 2708 - 2718
  • [23] Physiological and molecular responses of maize (Zea mays L.) plants to drought and rehydration
    Voronin, P. Yu
    Maevskaya, S. N.
    Nikolaeva, M. K.
    PHOTOSYNTHETICA, 2019, 57 (03) : 850 - 856
  • [24] Productivity of maize cultivars (Zea mays L.) and quality of components and silage
    de Almeida, SL
    de Fonseca, DM
    Garcia, R
    Obeid, JA
    Oliveira, JSE
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 1999, 28 (01): : 7 - 13
  • [25] The effect of nitrogen fertilisation on yield and quality of maize (Zea mays L.)
    Omar, S.
    Abd Ghani, R.
    Khaeim, H.
    Sghaier, A. H.
    Jolankai, M.
    ACTA ALIMENTARIA, 2022, 51 (02) : 249 - 258
  • [26] Physiological Responses of Contrasting Maize (Zea mays L.) Hybrids to Repeated Drought
    Markus Kränzlein
    Christoph-Martin Geilfus
    Bastian L. Franzisky
    Xudong Zhang
    Monika A. Wimmer
    Christian Zörb
    Journal of Plant Growth Regulation, 2022, 41 : 2708 - 2718
  • [28] The modulation of light quality on carotenoids in maize (Zea mays L.) sprouts
    Xiang, Nan
    Zhao, Yihan
    Wang, Siyun
    Guo, Xinbo
    FOOD CHEMISTRY: MOLECULAR SCIENCES, 2022, 5
  • [29] Safeners for chlorsulfuron on maize (Zea mays L.)
    Stoilkova, Gergana
    Yonova, Petranka
    QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS, 2010, 2 (01) : 28 - 35
  • [30] Dwarf mutants of maize (Zea mays L.)
    Cheng, VC
    Cheng, WY
    Cheng, PC
    Walden, DB
    SCANNING, 2005, 27 (02) : 81 - 82