A stopping criterion for the conjugate gradient algorithm in a finite element method framework

被引:0
|
作者
M. Arioli
机构
[1] Rutherford Appleton Laboratory,
来源
Numerische Mathematik | 2004年 / 97卷
关键词
Differential Equation; Finite Element Method; Partial Differential Equation; Recent Result; Iterative Process;
D O I
暂无
中图分类号
学科分类号
摘要
The Conjugate Gradient method has always been successfully used in solving the symmetric and positive definite systems obtained by the finite element approximation of self-adjoint elliptic partial differential equations. Taking into account recent results [13, 19, 20, 22] which make it possible to approximate the energy norm of the error during the conjugate gradient iterative process, we adapt the stopping criterion introduced in [3]. Moreover, we show that the use of efficient preconditioners does not require to change the energy norm used by the stopping criterion. Finally, we present the results of several numerical tests that experimentally validate the effectiveness of our stopping criterion.
引用
收藏
页码:1 / 24
页数:23
相关论文
共 50 条
  • [21] A Unified framework for co-rotational finite element method
    Luo, XianLong
    Yang, Shizhu
    Xu, TianBai
    ADVANCED RESEARCH ON INDUSTRY, INFORMATION SYSTEM AND MATERIAL ENGINEERING, 2012, 459 : 329 - 332
  • [22] Parameter identification of gradient enhanced damage models with the finite element method
    Mahnken, R
    Kuhl, E
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 1999, 18 (05) : 819 - 835
  • [23] Validation of a Finite Element Method framework for cardiac mechanics applications
    Danan, David
    Le Rolle, Virginie
    Hubert, Arnaud
    Galli, Elena
    Bernard, Anne
    Donal, Erwan
    Hernandez, Alfredo I.
    13TH INTERNATIONAL CONFERENCE ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2017, 10572
  • [24] Parallelization of EMAP3D based on element-by-element Jacobi preconditioned conjugate gradient method
    Hsieh, KT
    IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (01) : 139 - 141
  • [25] Algorithm of mesh-moving in ALE finite element method
    Wang, Yue-Xian
    Chen, Jun
    Ruan, Xue-Yu
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2001, 35 (10): : 1539 - 1542
  • [26] SHAPE OPTIMIZATION USING A GENETIC ALGORITHM AND FINITE ELEMENT METHOD
    Hermann, M.
    Hrus, T.
    Kacalek, P.
    ENGINEERING MECHANICS 2020 (IM2020), 2020, : 190 - 193
  • [27] MODIFIED HEURISTIC CRITERION FOR PARAMETER CHOICE FOR ONE STABILIZATION SCHEME OF THE FINITE ELEMENT METHOD
    Drebotiy, R.
    Shynkarenko, H.
    JOURNAL OF APPLIED AND NUMERICAL ANALYSIS, 2024, 2 : 41 - 55
  • [28] A new finite element method for strain gradient theories and applications to fracture analyses
    Wei, Yueguang
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2006, 25 (06) : 897 - 913
  • [29] An object-oriented modular framework for implementing the finite element method
    Yu, LC
    Kumar, AV
    COMPUTERS & STRUCTURES, 2001, 79 (09) : 919 - 928
  • [30] Finite element method and boundary element method iterative coupling algorithm for 2-D elastodynamic analysis
    Ji, Duofa
    Lei, Weidong
    Liu, Zhijian
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03)