Isometric Shifts and Metric Spaces

被引:0
|
作者
Jesús Araujo
Juan J. Font
机构
[1]  Universidad de Cantabria,
[2] Santander,undefined
[3] Spain,undefined
[4]  Universitat Jaume I,undefined
[5] Castellón,undefined
[6] Spain,undefined
来源
Monatshefte für Mathematik | 2001年 / 134卷
关键词
2000 Mathematics Subject Classification: 47B38; 54D65; 46J10; Key words: Isometric shifts; metric spaces; separability;
D O I
暂无
中图分类号
学科分类号
摘要
 Let M be a complete metric space. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} admits an isometric shift, then M is separable.
引用
收藏
页码:1 / 8
页数:7
相关论文
共 50 条
  • [21] Two classes of metric spaces
    Isabel Garrido, M.
    Merona, Ana S.
    APPLIED GENERAL TOPOLOGY, 2016, 17 (01): : 57 - 70
  • [22] Hodge Theory on Metric Spaces
    Laurent Bartholdi
    Thomas Schick
    Nat Smale
    Steve Smale
    Foundations of Computational Mathematics, 2012, 12 : 1 - 48
  • [23] On metric spaces and local extrema
    Fedeli, Alessandro
    Le Donne, Attilio
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (13) : 2196 - 2199
  • [24] Local Currents in Metric Spaces
    Urs Lang
    Journal of Geometric Analysis, 2011, 21 : 683 - 742
  • [25] A Theory for Interpolation of Metric Spaces
    Sette, Robledo Mak's Miranda
    Fernandez, Dicesar Lass
    da Silva, Eduardo Brandani
    AXIOMS, 2024, 13 (07)
  • [26] On the lp*-equivalence of metric spaces
    Baars, Jan
    TOPOLOGY AND ITS APPLICATIONS, 2021, 298
  • [27] The Besov capacity in metric spaces
    Nuutinen, Juho
    ANNALES POLONICI MATHEMATICI, 2016, 117 (01) : 59 - 78
  • [28] A Ramsey theorem for metric spaces
    Komjath, Peter
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2720 - 2722
  • [29] Lines, Betweenness and Metric Spaces
    Aboulker, Pierre
    Chen, Xiaomin
    Huzhang, Guangda
    Kapadia, Rohan
    Supko, Cathryn
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 56 (02) : 427 - 448
  • [30] Hodge Theory on Metric Spaces
    Bartholdi, Laurent
    Schick, Thomas
    Smale, Nat
    Smale, Steve
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (01) : 1 - 48