Is the allee effect relevant to stochastic cancer model?

被引:0
作者
Mrinmoy Sardar
Subhas Khajanchi
机构
[1] Jadavpur University,Department of Mathematics
[2] Presidency University,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2022年 / 68卷
关键词
Dynamical bifurcation point; Existence & uniqueness; Parametric perturbation method; Brownian motion; Uniformly continuous; 34L30; 37D10; 60H10; 92B05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper delineates the evolution of a tumor cell population with Allee effect through a system of stochastic differential equations. A stochastic extension of the deterministic model is examined to encapsulate the uncertainty or variation observed in the tumor evolution using parametric perturbation method. We have discussed the existence, uniqueness, stochastically ultimate bounded, stochastically permanence and asymptotic stability of the solutions to the stochastic tumor cell population with the aid of constructing Lyapunov function. Then we have investigated that the model has a unique dynamical bifurcation point Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta $$\end{document} with the following conditions: if Θ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta < 0$$\end{document}, then the model has a unique invariant measure, the Dirac measure concentrated at zero, and it is stable. If Θ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta > 0$$\end{document} then a stable unique invariant measure on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {R}}_{+}$$\end{document} occurs, and the Dirac measure concentrated at zero is unstable. Numerical results are performed using first-order Ito-Wiener stochastic scheme to exhibit the theoretical analysis.
引用
收藏
页码:2293 / 2315
页数:22
相关论文
共 58 条
  • [1] Benzekry S(2014)Classical mathematical models for description and prediction of experimental tumor growth PLoS Comput. Biol. 10 e1003800-671
  • [2] Lamont C(2014)Stability and bifurcation analysis of delay induced tumor immune interaction model Appl. Math. Comput. 248 652-379
  • [3] Beheshti A(2017)The role of Allee effect in modelling post resection recurrence of glioblastoma PLoS Comput. Biol. 13 e1005818-345
  • [4] Tracz A(2014)Turning ecology and evolution against cancer Nat. Rev. Cancer. 14 371-77
  • [5] Ebos JML(2013)The causes and consequences of genetic heterogeneity in cancer evolution Nature. 501 338-285
  • [6] Hlatky L(2017)Quantifying the role of immunotherapeutic drug T11 target structure in progression of malignant gliomas: mathematical modeling and dynamical perspective Math. Biosci. 289 69-118
  • [7] Hahnfeldt P(2019)Stability analysis of a mathematical model for glioma-immune interaction under optimal therapy Int. J. Nonlinear Sci. Numer. Simul. 20 269-276
  • [8] Khajanchi S(2018)Modeling the dynamics of glioma-immune surveillance Chaos Soliton Fract. 114 110-401
  • [9] Banerjee S(2015)Bifurcation analysis of a delayed mathematical model for tumor growth Chaos Soliton Fract. 77 264-7660
  • [10] Neufeld Z(2019)Cancer cell population growth kinetics at low densities deviate from the exponential growth model and suggest an Allee effect PLoS Biol. 17 e3000399-718