A Large Deviation Principle for Weighted Riesz Interactions
被引:0
|
作者:
Tom Bloom
论文数: 0引用数: 0
h-index: 0
机构:University of Toronto,
Tom Bloom
Norman Levenberg
论文数: 0引用数: 0
h-index: 0
机构:University of Toronto,
Norman Levenberg
Franck Wielonsky
论文数: 0引用数: 0
h-index: 0
机构:University of Toronto,
Franck Wielonsky
机构:
[1] University of Toronto,
[2] Indiana University,undefined
[3] Université Aix-Marseille,undefined
来源:
Constructive Approximation
|
2018年
/
47卷
关键词:
Riesz potential;
Large deviation principle;
31B15;
60F10;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We prove a large deviation principle for the sequence of push-forwards of empirical measures in the setting of Riesz potential interactions on compact subsets K in Rd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^d$$\end{document} with continuous external fields. Our results are valid for base measures on K satisfying a strong Bernstein–Markov type property for Riesz potentials. Furthermore, we give sufficient conditions on K (which are satisfied if K is a smooth submanifold) so that a measure on K that satisfies a mass-density condition will also satisfy this strong Bernstein–Markov property.
机构:
NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
Inst Univ France, Paris, France
Sorbonne Univ, UPMC, CNRS, UMR 7598,Lab Jacques Louis Lions, 4 Pl Jussieu, F-75005 Paris, FranceVanderbilt Univ, Dept Math, Ctr Construct Approximat, Nashville, TN 37240 USA
机构:
Mechanical Engineering Problems Institute of RAS, St. Petersburg State University, St. PetersburgMechanical Engineering Problems Institute of RAS, St. Petersburg State University, St. Petersburg
机构:
Budapest Univ Technol & Econ, MTA BME Lendulet Quantum Informat Theory Res Grp, Egry Jozsef U 1, H-1111 Budapest, Hungary
Budapest Univ Technol & Econ, Inst Math, Egry Jozsef U 1, H-1111 Budapest, HungaryUniv Los Andes, Dept Fis, Cra 1 18A-12, Bogota, Colombia