A Large Deviation Principle for Weighted Riesz Interactions

被引:0
|
作者
Tom Bloom
Norman Levenberg
Franck Wielonsky
机构
[1] University of Toronto,
[2] Indiana University,undefined
[3] Université Aix-Marseille,undefined
来源
Constructive Approximation | 2018年 / 47卷
关键词
Riesz potential; Large deviation principle; 31B15; 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a large deviation principle for the sequence of push-forwards of empirical measures in the setting of Riesz potential interactions on compact subsets K in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} with continuous external fields. Our results are valid for base measures on K satisfying a strong Bernstein–Markov type property for Riesz potentials. Furthermore, we give sufficient conditions on K (which are satisfied if K is a smooth submanifold) so that a measure on K that satisfies a mass-density condition will also satisfy this strong Bernstein–Markov property.
引用
收藏
页码:119 / 140
页数:21
相关论文
共 50 条
  • [1] A Large Deviation Principle for Weighted Riesz Interactions
    Bloom, Tom
    Levenberg, Norman
    Wielonsky, Franck
    CONSTRUCTIVE APPROXIMATION, 2018, 47 (01) : 119 - 140
  • [2] Large Deviation Principles for Hypersingular Riesz Gases
    Douglas P. Hardin
    Thomas Leblé
    Edward B. Saff
    Sylvia Serfaty
    Constructive Approximation, 2018, 48 : 61 - 100
  • [3] Large Deviation Principles for Hypersingular Riesz Gases
    Hardin, Douglas P.
    Leble, Thomas
    Saff, Edward B.
    Serfaty, Sylvia
    CONSTRUCTIVE APPROXIMATION, 2018, 48 (01) : 61 - 100
  • [4] A large deviation principle of reflecting diffusions
    Sheu, SS
    TAIWANESE JOURNAL OF MATHEMATICS, 1998, 2 (02): : 251 - 256
  • [5] Large deviation principle for optimal filtering
    Xiong, J
    APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (02) : 151 - 165
  • [6] LARGE DEVIATION PRINCIPLE FOR EPIDEMIC MODELS
    Pardoux, Etienne
    Samegni-Kepgnou, Brice
    JOURNAL OF APPLIED PROBABILITY, 2017, 54 (03) : 905 - 920
  • [7] A large deviation principle for the Brownian snake
    Serlet, L
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 67 (01) : 101 - 115
  • [8] Large Deviation Principle for Moderate Deviation Probabilities of Bootstrap Empirical Measures
    Ermakov M.S.
    Journal of Mathematical Sciences, 2015, 204 (1) : 90 - 115
  • [9] Large deviation principle for moment map estimation
    Botero, Alonso
    Christandl, Matthias
    Vrana, Peter
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [10] THE LARGE-DEVIATION PRINCIPLE AND THE BCS MODEL
    PILYAVSKY, AI
    REBENKO, AL
    JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (5-6) : 1321 - 1322