Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

被引:0
作者
Fan Wang
Dachun Yang
Wen Yuan
机构
[1] School of Mathematical Sciences,Laboratory of Mathematics and Complex Systems (Ministry of Education of China)
[2] Beijing Normal University,undefined
来源
Journal of Fourier Analysis and Applications | 2023年 / 29卷
关键词
Riesz transform characterization; Ball quasi-Banach function space; Hardy space; Poisson integral; Primary 42B30; Secondary 42B35; 42B20; 44A15; 47B06;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space satisfying some mild assumptions and HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document} the Hardy space associated with X. In this article, the authors introduce both the Hardy space HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^{n+1}_+)$$\end{document} of harmonic functions and the Hardy space HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_X(\mathbb {R}^{n+1}_+)$$\end{document} of harmonic vectors, associated with X, and then establish the isomorphisms among HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}, HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document}, and HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document}, where HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document} and HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document} are, respectively, certain subspaces of HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^{n+1}_+)$$\end{document} and HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_X(\mathbb {R}^{n+1}_+)$$\end{document}. Using these isomorphisms, the authors establish the first order Riesz transform characterization of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}. The higher order Riesz transform characterization of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document} is also obtained. The results obtained in this article have a wide range of generality and can be applied to classical Hardy spaces, weighted Hardy spaces, variable Hardy spaces, Herz–Hardy spaces, Lorentz–Hardy spaces, mixed-norm Hardy spaces, local generalized Herz–Hardy spaces, and mixed-norm Herz–Hardy spaces and all the obtained results on the aforementioned last five Hardy-type spaces are completely new.
引用
收藏
相关论文
共 50 条
[41]   Riesz transform characterizations of variable Hardy–Lorentz spaces [J].
Lian Wu ;
Dejian Zhou ;
Ciqiang Zhuo ;
Yong Jiao .
Revista Matemática Complutense, 2018, 31 :747-780
[42]   Riesz transform characterizations of variable Hardy-Lorentz spaces [J].
Wu, Lian ;
Zhou, Dejian ;
Zhuo, Ciqiang ;
Jiao, Yong .
REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (03) :747-780
[43]   Solid hulls of quasi-Banach spaces of analytic functions and interpolation [J].
Mastylo, Mieczyslaw ;
Mleczko, Pawel .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) :84-98
[44]   Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators [J].
Cao, Jun ;
Yang, Dachun ;
Yang, Sibei .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01) :99-114
[45]   Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators [J].
Jun Cao ;
Dachun Yang ;
Sibei Yang .
Revista Matemática Complutense, 2013, 26 :99-114
[46]   Riesz transform characterization of H1 spaces associated with certain Laguerre expansions [J].
Preisner, Marcin .
JOURNAL OF APPROXIMATION THEORY, 2012, 164 (02) :229-252
[47]   A remark on Riesz bases of subspaces in Hardy spaces [J].
Dang, Pei ;
Mai, Weixiong .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (11) :1950-1961
[48]   Bloch, Hardy, and BMOA spaces in the ball [J].
Dubtsov E.S. .
Journal of Mathematical Sciences, 2006, 139 (2) :6403-6405
[49]   The boundedness of Riesz transforms for Hermite expansions on the Hardy spaces [J].
Huang Jizheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) :559-571
[50]   Riesz's functions in weighted Hardy and Bergman spaces [J].
Nakazi, T ;
Yamada, M .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (05) :930-945