Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

被引:0
作者
Fan Wang
Dachun Yang
Wen Yuan
机构
[1] School of Mathematical Sciences,Laboratory of Mathematics and Complex Systems (Ministry of Education of China)
[2] Beijing Normal University,undefined
来源
Journal of Fourier Analysis and Applications | 2023年 / 29卷
关键词
Riesz transform characterization; Ball quasi-Banach function space; Hardy space; Poisson integral; Primary 42B30; Secondary 42B35; 42B20; 44A15; 47B06;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space satisfying some mild assumptions and HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document} the Hardy space associated with X. In this article, the authors introduce both the Hardy space HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^{n+1}_+)$$\end{document} of harmonic functions and the Hardy space HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_X(\mathbb {R}^{n+1}_+)$$\end{document} of harmonic vectors, associated with X, and then establish the isomorphisms among HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}, HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document}, and HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document}, where HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document} and HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document} are, respectively, certain subspaces of HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^{n+1}_+)$$\end{document} and HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_X(\mathbb {R}^{n+1}_+)$$\end{document}. Using these isomorphisms, the authors establish the first order Riesz transform characterization of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}. The higher order Riesz transform characterization of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document} is also obtained. The results obtained in this article have a wide range of generality and can be applied to classical Hardy spaces, weighted Hardy spaces, variable Hardy spaces, Herz–Hardy spaces, Lorentz–Hardy spaces, mixed-norm Hardy spaces, local generalized Herz–Hardy spaces, and mixed-norm Herz–Hardy spaces and all the obtained results on the aforementioned last five Hardy-type spaces are completely new.
引用
收藏
相关论文
共 50 条
[31]   Littlewood-Paley Characterizations of Hardy-Type Spaces Associated with Ball Quasi-Banach Function SpacesIn Memory of Professor Carlos Berenstein [J].
Der-Chen Chang ;
Songbai Wang ;
Dachun Yang ;
Yangyang Zhang .
Complex Analysis and Operator Theory, 2020, 14
[32]   Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators [J].
Yangyang Zhang ;
Dachun Yang ;
Wen Yuan ;
Songbai Wang .
Science China Mathematics, 2021, 64 :2007-2064
[33]   Weak-Type Representation of Quasi-Norms of Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type [J].
Tang, Menghao ;
Nakai, Eiichi ;
Yang, Dachun ;
Yuan, Wen ;
Zhu, Chenfeng .
JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (05)
[34]   RIESZ TRANSFORM CHARACTERIZATION OF HARDY SPACES ASSOCIATED WITH CERTAIN LAGUERRE EXPANSIONS [J].
Betancor, Jorge ;
Dziubanski, Jacek ;
Garrigos, Gustavo .
TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (02) :215-231
[35]   Weak type estimates of genuine Calderón-Zygmund operators on the local Morrey spaces associated with ball quasi-Banach function spaces [J].
Shi, Mingwei ;
Zhou, Jiang ;
Wang, Songbai .
GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (06) :1011-1020
[36]   Riesz Transform Characterizations for Multidimensional Hardy Spaces [J].
Edyta Kania-Strojec ;
Marcin Preisner .
The Journal of Geometric Analysis, 2022, 32
[37]   Riesz Transform Characterizations for Multidimensional Hardy Spaces [J].
Kania-Strojec, Edyta ;
Preisner, Marcin .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (05)
[38]   Riesz Transform Characterizations of Hardy Spaces Associated to Degenerate Elliptic Operators [J].
Yang, Dachun ;
Zhang, Junqiang .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 84 (02) :183-216
[39]   Riesz Transform Characterizations of Hardy Spaces Associated to Degenerate Elliptic Operators [J].
Dachun Yang ;
Junqiang Zhang .
Integral Equations and Operator Theory, 2016, 84 :183-216