Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

被引:0
作者
Fan Wang
Dachun Yang
Wen Yuan
机构
[1] School of Mathematical Sciences,Laboratory of Mathematics and Complex Systems (Ministry of Education of China)
[2] Beijing Normal University,undefined
来源
Journal of Fourier Analysis and Applications | 2023年 / 29卷
关键词
Riesz transform characterization; Ball quasi-Banach function space; Hardy space; Poisson integral; Primary 42B30; Secondary 42B35; 42B20; 44A15; 47B06;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space satisfying some mild assumptions and HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document} the Hardy space associated with X. In this article, the authors introduce both the Hardy space HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^{n+1}_+)$$\end{document} of harmonic functions and the Hardy space HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_X(\mathbb {R}^{n+1}_+)$$\end{document} of harmonic vectors, associated with X, and then establish the isomorphisms among HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}, HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document}, and HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document}, where HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document} and HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document} are, respectively, certain subspaces of HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^{n+1}_+)$$\end{document} and HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_X(\mathbb {R}^{n+1}_+)$$\end{document}. Using these isomorphisms, the authors establish the first order Riesz transform characterization of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}. The higher order Riesz transform characterization of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document} is also obtained. The results obtained in this article have a wide range of generality and can be applied to classical Hardy spaces, weighted Hardy spaces, variable Hardy spaces, Herz–Hardy spaces, Lorentz–Hardy spaces, mixed-norm Hardy spaces, local generalized Herz–Hardy spaces, and mixed-norm Herz–Hardy spaces and all the obtained results on the aforementioned last five Hardy-type spaces are completely new.
引用
收藏
相关论文
共 50 条
[21]   Weak Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Decompositions, Real Interpolation, and Calderón–Zygmund Operators [J].
Jingsong Sun ;
Dachun Yang ;
Wen Yuan .
The Journal of Geometric Analysis, 2022, 32
[22]   Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Littlewood-Paley Characterizations with Applications to Boundedness of Calderon-Zygmund Operators [J].
Yan, Xian Jie ;
He, Zi Yi ;
Yang, Da Chun ;
Yuan, Wen .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (07) :1133-1184
[23]   Weak Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces II: Littlewood–Paley Characterizations and Real Interpolation [J].
Songbai Wang ;
Dachun Yang ;
Wen Yuan ;
Yangyang Zhang .
The Journal of Geometric Analysis, 2021, 31 :631-696
[24]   Gagliardo representation of norms of ball quasi-Banach function spaces [J].
Pan, Zhulei ;
Yang, Dachun ;
Yuan, Wen ;
Zhang, Yangyang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (02)
[25]   Weak Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Decompositions, Real Interpolation, and Calderon-Zygmund Operators [J].
Sun, Jingsong ;
Yang, Dachun ;
Yuan, Wen .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (07)
[26]   Weak Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces II: Littlewood-Paley Characterizations and Real Interpolation [J].
Wang, Songbai ;
Yang, Dachun ;
Yuan, Wen ;
Zhang, Yangyang .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) :631-696
[27]   Maximal function characterizations of Hardy spaces associated with both non-negative self-adjoint operators satisfying Gaussian estimates and ball quasi-Banach function spaces [J].
Lin, Xiaosheng ;
Yang, Dachun ;
Yang, Sibei ;
Yuan, Wen .
ACTA MATHEMATICA SCIENTIA, 2024, 44 (02) :484-514
[28]   Maximal function characterizations of Hardy spaces associated with both non-negative self-adjoint operators satisfying Gaussian estimates and ball quasi-Banach function spaces [J].
Xiaosheng Lin ;
Dachun Yang ;
Sibei Yang ;
Wen Yuan .
Acta Mathematica Scientia, 2024, 44 :484-514
[29]   Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderon-Zygmund operators [J].
Zhang, Yangyang ;
Yang, Dachun ;
Yuan, Wen ;
Wang, Songbai .
SCIENCE CHINA-MATHEMATICS, 2021, 64 (09) :2007-2064
[30]   Uniqueness of unconditional bases in quasi-banach spaces with applications to hardy spaces, II [J].
P. Wojtaszczyk .
Israel Journal of Mathematics, 1997, 97 :253-280