Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

被引:0
作者
Fan Wang
Dachun Yang
Wen Yuan
机构
[1] School of Mathematical Sciences,Laboratory of Mathematics and Complex Systems (Ministry of Education of China)
[2] Beijing Normal University,undefined
来源
Journal of Fourier Analysis and Applications | 2023年 / 29卷
关键词
Riesz transform characterization; Ball quasi-Banach function space; Hardy space; Poisson integral; Primary 42B30; Secondary 42B35; 42B20; 44A15; 47B06;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space satisfying some mild assumptions and HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document} the Hardy space associated with X. In this article, the authors introduce both the Hardy space HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^{n+1}_+)$$\end{document} of harmonic functions and the Hardy space HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_X(\mathbb {R}^{n+1}_+)$$\end{document} of harmonic vectors, associated with X, and then establish the isomorphisms among HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}, HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document}, and HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document}, where HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document} and HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document} are, respectively, certain subspaces of HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^{n+1}_+)$$\end{document} and HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_X(\mathbb {R}^{n+1}_+)$$\end{document}. Using these isomorphisms, the authors establish the first order Riesz transform characterization of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}. The higher order Riesz transform characterization of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document} is also obtained. The results obtained in this article have a wide range of generality and can be applied to classical Hardy spaces, weighted Hardy spaces, variable Hardy spaces, Herz–Hardy spaces, Lorentz–Hardy spaces, mixed-norm Hardy spaces, local generalized Herz–Hardy spaces, and mixed-norm Herz–Hardy spaces and all the obtained results on the aforementioned last five Hardy-type spaces are completely new.
引用
收藏
相关论文
共 50 条
  • [21] Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Littlewood-Paley Characterizations with Applications to Boundedness of Calderon-Zygmund Operators
    Yan, Xian Jie
    He, Zi Yi
    Yang, Da Chun
    Yuan, Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (07) : 1133 - 1184
  • [22] Gagliardo representation of norms of ball quasi-Banach function spaces
    Pan, Zhulei
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (02)
  • [23] Weak Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces II: Littlewood–Paley Characterizations and Real Interpolation
    Songbai Wang
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    The Journal of Geometric Analysis, 2021, 31 : 631 - 696
  • [24] Weak Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Decompositions, Real Interpolation, and Calderón–Zygmund Operators
    Jingsong Sun
    Dachun Yang
    Wen Yuan
    The Journal of Geometric Analysis, 2022, 32
  • [25] Weak Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Decompositions, Real Interpolation, and Calderon-Zygmund Operators
    Sun, Jingsong
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (07)
  • [26] Weak Hardy-Type Spaces Associated with Ball Quasi-Banach Function Spaces II: Littlewood-Paley Characterizations and Real Interpolation
    Wang, Songbai
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 631 - 696
  • [27] Maximal function characterizations of Hardy spaces associated with both non-negative self-adjoint operators satisfying Gaussian estimates and ball quasi-Banach function spaces
    Lin, Xiaosheng
    Yang, Dachun
    Yang, Sibei
    Yuan, Wen
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (02) : 484 - 514
  • [28] Maximal function characterizations of Hardy spaces associated with both non-negative self-adjoint operators satisfying Gaussian estimates and ball quasi-Banach function spaces
    Xiaosheng Lin
    Dachun Yang
    Sibei Yang
    Wen Yuan
    Acta Mathematica Scientia, 2024, 44 : 484 - 514
  • [29] Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderon-Zygmund operators
    Zhang, Yangyang
    Yang, Dachun
    Yuan, Wen
    Wang, Songbai
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (09) : 2007 - 2064
  • [30] Uniqueness of unconditional bases in quasi-banach spaces with applications to hardy spaces, II
    P. Wojtaszczyk
    Israel Journal of Mathematics, 1997, 97 : 253 - 280