Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

被引:0
|
作者
Fan Wang
Dachun Yang
Wen Yuan
机构
[1] School of Mathematical Sciences,Laboratory of Mathematics and Complex Systems (Ministry of Education of China)
[2] Beijing Normal University,undefined
来源
Journal of Fourier Analysis and Applications | 2023年 / 29卷
关键词
Riesz transform characterization; Ball quasi-Banach function space; Hardy space; Poisson integral; Primary 42B30; Secondary 42B35; 42B20; 44A15; 47B06;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space satisfying some mild assumptions and HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document} the Hardy space associated with X. In this article, the authors introduce both the Hardy space HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^{n+1}_+)$$\end{document} of harmonic functions and the Hardy space HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_X(\mathbb {R}^{n+1}_+)$$\end{document} of harmonic vectors, associated with X, and then establish the isomorphisms among HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}, HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document}, and HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document}, where HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document} and HX,2(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_{X,2}(\mathbb {R}^{n+1}_+)$$\end{document} are, respectively, certain subspaces of HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^{n+1}_+)$$\end{document} and HX(R+n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}_X(\mathbb {R}^{n+1}_+)$$\end{document}. Using these isomorphisms, the authors establish the first order Riesz transform characterization of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}. The higher order Riesz transform characterization of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document} is also obtained. The results obtained in this article have a wide range of generality and can be applied to classical Hardy spaces, weighted Hardy spaces, variable Hardy spaces, Herz–Hardy spaces, Lorentz–Hardy spaces, mixed-norm Hardy spaces, local generalized Herz–Hardy spaces, and mixed-norm Herz–Hardy spaces and all the obtained results on the aforementioned last five Hardy-type spaces are completely new.
引用
收藏
相关论文
共 50 条
  • [1] Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (05)
  • [2] Fourier transform of Hardy spaces associated with ball quasi-Banach function spaces
    Huang, Long
    Chang, Der-Chen
    Yang, Dachun
    APPLICABLE ANALYSIS, 2022, 101 (11) : 3825 - 3840
  • [3] Bochner–Riesz Means on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Jian Tan
    Linjing Zhang
    Mediterranean Journal of Mathematics, 2023, 20
  • [4] Bochner-Riesz Means on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Tan, Jian
    Zhang, Linjing
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (05)
  • [5] Hardy spaces for ball quasi-Banach function spaces
    Sawano, Yoshihiro
    Ho, Kwok-Pun
    Yang, Dachun
    Yang, Sibei
    DISSERTATIONES MATHEMATICAE, 2017, (525) : 1 - 102
  • [6] Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Fan Wang
    Dachun Yang
    Sibei Yang
    Results in Mathematics, 2020, 75
  • [7] Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Wang, Fan
    Yang, Dachun
    Yang, Sibei
    RESULTS IN MATHEMATICS, 2020, 75 (01)
  • [8] Maximal Function and Riesz Transform Characterizations of Hardy Spaces Associated with Homogeneous Higher Order Elliptic Operators and Ball Quasi-Banach Function Spaces
    Lin, Xiaosheng
    Yang, Dachun
    Yang, Sibei
    Yuan, Wen
    CONSTRUCTIVE APPROXIMATION, 2025, 61 (01) : 1 - 61
  • [9] Product local Hardy spaces associated with ball quasi-Banach function spaces
    Bao, Jieyuran
    Tan, Jian
    Zhao, Jiman
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2025, 16 (01)
  • [10] Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces
    Yan, Xianjie
    Yang, Dachun
    Yuan, Wen
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (04) : 769 - 806