Scale invariant elliptic operators with singular coefficients

被引:0
作者
G. Metafune
N. Okazawa
M. Sobajima
C. Spina
机构
[1] Università del Salento,Dipartimento di Matematica “Ennio De Giorgi”
[2] Tokyo University of Science,Department of Mathematics
来源
Journal of Evolution Equations | 2016年 / 16卷
关键词
Elliptic operators; Unbounded coefficients; Generation results; Analytic semigroups; 47D07; 35B50; 35J25; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a realization of the operator L=|x|αΔ+c|x|α-1x|x|·∇-b|x|α-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L=|x|^\alpha\Delta +c|x|^{\alpha-1} \frac{x}{|x|} \cdot\nabla -b|x|^{\alpha-2}}$$\end{document} generates a semigroup in Lp(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^p(\mathbb{R}^N)}$$\end{document} if and only if Dc=b+(N-2+c)2/4>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_c=b+(N-2+c)^2/4 > 0}$$\end{document} and s1+min{0,2-α}<N/p<s2+max{0,2-α}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s_1+\min\{0,2-\alpha\} < N/p < s_2+\max\{0,2-\alpha\}}$$\end{document}, where si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s_i}$$\end{document} are the roots of the equation b+s(N-2+c-s)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b+s(N-2+c-s)=0}$$\end{document}, or Dc=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_c=0}$$\end{document} and s0+min{0,2-α}<N/p<s0+max{0,2-α}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s_0+\min\{0,2-\alpha\} < N/p < s_0+\max\{0,2-\alpha\}}$$\end{document}, where s0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s_0}$$\end{document} is the unique root of the above equation. The domain of the generator is also characterized.
引用
收藏
页码:391 / 439
页数:48
相关论文
共 35 条
[11]  
Tyutin I. V.(2012)-semigroups associated with second-order elliptic operators II Discrete and Continuous Dynamical Systems A32 2285-2299
[12]  
Voronov B. L.(2014)An integration by parts formula in Sobolev spaces Adv. Differential Equations 19 472-526
[13]  
Liskevich V.(1996)Elliptic operators with unbounded diffusion coefficients in Japan. J. Math. 22 199-239
[14]  
Sobol Z.(2014) spaces J. Differential Equations 256 3568-3593
[15]  
Vogt H.(2012)A degenerate elliptic operator with unbounded diffusion coefficients J. Evol. Equ. 12 957-971
[16]  
Metafune G.(2014)Kernel estimates for some elliptic operators with unbounded coefficients J. Math. Anal. Appl. 416 855-861
[17]  
Spina C.(2013)Elliptic operators with unbounded diffusion and drift coefficients in Semigroup Forum 86 67-82
[18]  
Metafune G.(2000) spaces Journal of Functional Analysis 173 103-153
[19]  
Spina C.(undefined)-theory of Schrödinger operators with strongly singular potentials undefined undefined undefined-undefined
[20]  
Metafune G.(undefined)Existence of solutions to heat equations with singular lower order terms undefined undefined undefined-undefined