Scale invariant elliptic operators with singular coefficients

被引:0
作者
G. Metafune
N. Okazawa
M. Sobajima
C. Spina
机构
[1] Università del Salento,Dipartimento di Matematica “Ennio De Giorgi”
[2] Tokyo University of Science,Department of Mathematics
来源
Journal of Evolution Equations | 2016年 / 16卷
关键词
Elliptic operators; Unbounded coefficients; Generation results; Analytic semigroups; 47D07; 35B50; 35J25; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a realization of the operator L=|x|αΔ+c|x|α-1x|x|·∇-b|x|α-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L=|x|^\alpha\Delta +c|x|^{\alpha-1} \frac{x}{|x|} \cdot\nabla -b|x|^{\alpha-2}}$$\end{document} generates a semigroup in Lp(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^p(\mathbb{R}^N)}$$\end{document} if and only if Dc=b+(N-2+c)2/4>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_c=b+(N-2+c)^2/4 > 0}$$\end{document} and s1+min{0,2-α}<N/p<s2+max{0,2-α}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s_1+\min\{0,2-\alpha\} < N/p < s_2+\max\{0,2-\alpha\}}$$\end{document}, where si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s_i}$$\end{document} are the roots of the equation b+s(N-2+c-s)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b+s(N-2+c-s)=0}$$\end{document}, or Dc=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_c=0}$$\end{document} and s0+min{0,2-α}<N/p<s0+max{0,2-α}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s_0+\min\{0,2-\alpha\} < N/p < s_0+\max\{0,2-\alpha\}}$$\end{document}, where s0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s_0}$$\end{document} is the unique root of the above equation. The domain of the generator is also characterized.
引用
收藏
页码:391 / 439
页数:48
相关论文
共 35 条
[1]  
Baras P.(1984)The heat equation with a singular potential Trans. Amer. Math. Soc. 284 121-139
[2]  
Goldstein J.A.(1997)Blow-up solutions of some nonlinear elliptic problems Rev. Mat. Univ. Compl. Madrid 10 443-469
[3]  
Brezis H.(1999)Existence versus explosion istantanee pour des equationes de la chaleur lineaires avec potentiel singulaires C.R. Acad. Sci. Paris 329 973-978
[4]  
Vazquez J.L.(2008)Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities J. Math. Anal. Appl. 337 311-317
[5]  
Cabre X.(2007)Generation results for elliptic operators with unbounded diffusion coefficients in Discrete and Continuous Dynamical Systems A18 747-772
[6]  
Martel Y.(2010) and J. Phys. A: Math. Theor. 43 145-205
[7]  
Costa D. G.(2002)-spaces Journal of Functional Analysis 193 55-76
[8]  
Fornaro S.(2008)Self-adjoint extensions and spectral analysis in the Calogero problem Mediterranean Journal of Mathematics 5 359-371
[9]  
Lorenzi L.(2012)On the Annali Scuola Normale Superiore di Pisa Cl. Sc. (5) 11 303-340
[10]  
Gitman D. M.(2012)-theory for Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 25 109-140