Liouvillian integrability of the three-dimensional generalized Hénon–Heiles Hamiltonian

被引:0
作者
Idriss El Fakkousy
Jaouad Kharbach
Walid Chatar
Mohamed Benkhali
Abdellah Rezzouk
Mohammed Ouazzani-Jamil
机构
[1] Université Sidi Mohamed Ben Abdellah,Laboratoire de Physique du Solide, Faculté des Sciences Dhar El Mahraz
[2] Université Privée de Fès,Laboratoire Systèmes et Environnements Durables
来源
The European Physical Journal Plus | / 135卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we report about three cases of integrability in sense of Liouville for three-dimensional generalized Hénon–Heiles Hamiltonian. This also allow to get explicitly integrals of motions for each case. On the other hand, this paper investigates the phase space structure numerically with Poincaré surfaces of section and 3D projections which allow to verify that the analytical results are in agreement with the computations.
引用
收藏
相关论文
共 50 条
[41]   Constructing Solutions for the Generalized Hénon–Heiles System Through the Painlevé Test [J].
S. Yu. Vernov .
Theoretical and Mathematical Physics, 2003, 135 :792-801
[42]   Perturbed ion traps:: A generalization of the three-dimensional Henon-Heiles problem [J].
Lanchares, V ;
Pascual, AI ;
Palacián, J ;
Yanguas, P ;
Salas, JP .
CHAOS, 2002, 12 (01) :87-99
[43]   THREE-DIMENSIONAL GENERALIZED LOGARITHMIC SPIRALS [J].
Roa, Javier ;
Pelaez, Jesus .
SPACEFLIGHT MECHANICS 2016, PTS I-IV, 2016, 158 :319-338
[44]   A new three-dimensional conservative system with non - Hamiltonian energy and its synchronization application [J].
Yan, Shaohui ;
Zheng, Bian ;
Wang, Jianjian ;
Cui, Yu ;
Li, Lin ;
Jiang, Jiawei .
INTEGRATION-THE VLSI JOURNAL, 2024, 94
[45]   Application of a new Hamiltonian of interaction to three-dimensional structures [J].
Dolocan, A ;
Doloncan, VO ;
Dolocan, V .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (09) :1351-1368
[46]   The Hamiltonian formulation of tetrad gravity: Three-dimensional case [J].
Frolov, A. M. ;
Kiriushcheva, N. ;
Kuzmin, S. V. .
GRAVITATION & COSMOLOGY, 2010, 16 (03) :181-194
[47]   The Hamiltonian formulation of tetrad gravity: Three-dimensional case [J].
A. M. Frolov ;
N. Kiriushcheva ;
S. V. Kuzmin .
Gravitation and Cosmology, 2010, 16 :181-194
[48]   Symmetry group classification of three-dimensional Hamiltonian systems [J].
Damianou, PA ;
Sophocleous, C .
APPLIED MATHEMATICS LETTERS, 2000, 13 (02) :63-70
[49]   Hamiltonian thermodynamics of three-dimensional dilatonic black holes [J].
Dias, Goncalo A. S. ;
Lemos, Jose P. S. .
PHYSICAL REVIEW D, 2008, 78 (04)
[50]   Generalization of Hamiltonian mechanics to a three-dimensional phase space [J].
Sato, Naoki .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (06)