Liouvillian integrability of the three-dimensional generalized Hénon–Heiles Hamiltonian

被引:0
作者
Idriss El Fakkousy
Jaouad Kharbach
Walid Chatar
Mohamed Benkhali
Abdellah Rezzouk
Mohammed Ouazzani-Jamil
机构
[1] Université Sidi Mohamed Ben Abdellah,Laboratoire de Physique du Solide, Faculté des Sciences Dhar El Mahraz
[2] Université Privée de Fès,Laboratoire Systèmes et Environnements Durables
来源
The European Physical Journal Plus | / 135卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we report about three cases of integrability in sense of Liouville for three-dimensional generalized Hénon–Heiles Hamiltonian. This also allow to get explicitly integrals of motions for each case. On the other hand, this paper investigates the phase space structure numerically with Poincaré surfaces of section and 3D projections which allow to verify that the analytical results are in agreement with the computations.
引用
收藏
相关论文
共 50 条
[21]   Non-Hermitian Dirac Hamiltonian in Three-Dimensional Gravity and Pseudosupersymmetry [J].
Yesiltas, Ozlem .
ADVANCES IN HIGH ENERGY PHYSICS, 2015, 2015
[22]   NON-INTEGRABILITY OF GENERALIZED YANG-MILLS HAMILTONIAN SYSTEM [J].
Shi, Shaoyun ;
Li, Wenlei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) :1645-1655
[23]   LINEAR RECURSION FORMULAS OF GENERALIZED FOCUS QUANTITIES AND LOCAL INTEGRABILITY FOR A CLASS OF THREE-DIMENSIONAL SYSTEMS [J].
Wang, Qinlong ;
Li, Wenyu ;
Huang, Wentao .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (03) :1186-1194
[24]   Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Hénon maps [J].
S. V. Gonchenko ;
V. S. Gonchenko ;
J. C. Tatjer .
Regular and Chaotic Dynamics, 2007, 12 :233-266
[25]   On two nonintegrable cases of the generalized Hénon-Heiles system [J].
S. Yu. Vernov ;
E. I. Timoshkova .
Physics of Atomic Nuclei, 2005, 68 :1947-1955
[26]   Cases of Integrability of Three-Dimensional Dynamic Equations for a Solid [J].
M. V. Shamolin .
International Applied Mechanics, 2001, 37 :769-777
[27]   INTEGRABILITY AND BIFURCATIONS OF A THREE-DIMENSIONAL CIRCUIT DIFFERENTIAL SYSTEM [J].
Fercec, Brigita ;
Romanovski, Valery G. ;
Tang, Yilei ;
Zhang, Ling .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (08) :4573-4588
[28]   Local integrability of a family of three-dimensional quadratic systems [J].
Hu, Zhaoping ;
Han, Maoan ;
Romanovski, Valery G. .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 265 :78-86
[29]   Integrability and linearizability of a family of three-dimensional quadratic systems [J].
Aziz, Waleed ;
Amen, Azad ;
Pantazi, Chara .
Dynamical Systems, 2021, 36 (02) :317-331
[30]   INTEGRABILITY AND LINEARIZABILITY OF SYMMETRIC THREE-DIMENSIONAL QUADRATIC SYSTEMS [J].
Arcet, Barbara ;
Romanovski, Valery G. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (3-4) :361-378