Some irreducibility theorems of parabolic induction on the metaplectic group via the Langlands-Shahidi method

被引:0
作者
Dani Szpruch
机构
[1] Ben Gurion University of the Negev,The Center for Advanced Studies in Mathematics
[2] Purdue University,Department of Mathematics
来源
Israel Journal of Mathematics | 2013年 / 195卷
关键词
Parabolic Subgroup; Eisenstein Series; Plancherel Measure; Principal Series Representation; Supercuspidal Representation;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline {S{p_{2n}}({\rm{<Emphasis FontCategory="NonProportional">F</Emphasis>}})} $$\end{document} be the metaplectic double cover of F where F is a local field of characteristic 0. We use the Uniqueness of Whittaker model to define a metaplectic analog to Shahidi local coefficients and we use these coefficients to define gamma factors. We show that these gamma factors are multiplicative and satisfy the crude global functional equation. Then, we compute these factors in various cases and obtain explicit formulas for Plancherel measures. These computations are then used to prove some irreducibility theorems for parabolic induction on the metaplectic group over p-adic fields. In particular, we show that all principal series representations induced from unitary characters are irreducible. We also prove that parabolic induction from unitary supercuspidal representation of the Siegel parabolic sub group is irreducible if and only if a certain parabolic induction on F is irreducible.
引用
收藏
页码:897 / 971
页数:74
相关论文
共 50 条
  • [1] Banks W. D.(1998)Heredity of Whittaker models on the metaplectic group Pacific Journal of Mathematics 185 89-96
  • [2] Bernstein I. N.(1976)( Russian Mathematical Surveys 31 1-68
  • [3] Zelevinsky A. V.(1977)) Annales Scientifiques de l’École Normale Supérieure 10 441-472
  • [4] Bernstein I. N.(1961)Induced representations of reductive p-adic groups, I Bulletin de la Société Mathématique de France 89 43-75
  • [5] Zelevinsky A. V.(2006)Distributions sur un groupe localement compact et applications l’étude des representations des groupes p-adiques Journal of Lie Theory 16 239-249
  • [6] Bruhat F.(1991)Local coefficient matrices of metaplectic groups Duke Mathematical Journal 31 379-397
  • [7] Budden M.(1980)p-adic Whittaker functions on the metaplectic group Compositio Mathematica 41 207-231
  • [8] Bump D.(1986)The unramified principal series of p-adic groups. II. The Whittaker function Institut des Hautes Études Scientifiques. Publications Mathématiques 64 53-110
  • [9] Friedberg S.(1979)Metaplectic correspondence Israel Journal of Mathematics 34 21-37
  • [10] Hoffstein J.(1994)Uniqueness and existence of Whittaker models for the metaplectic group American Journal of Mathematics 116 1101-1151