Multiple solutions for superlinear double phase Neumann problems

被引:0
|
作者
Nikolaos S. Papageorgiou
Vicenţiu D. Rădulescu
Youpei Zhang
机构
[1] National Technical University,Department of Mathematics, Zografou Campus
[2] AGH University of Science and Technology,Faculty of Applied Mathematics
[3] Central South University,School of Mathematics and Statistics
[4] University of Craiova,Department of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2022年 / 116卷
关键词
Double phase; Musielak-Orlicz-Sobolev; Constant sign and nodal solutions; Nehari manifold; Superlinear reaction; 35J75 (Primary); 35A16; 35B50; 35B51; 35J20; 35J60; 47J15; 58E05; 58E07 (Secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We study a double phase Neumann problem with a superlinear reaction which need not satisfy the Ambrosetti-Rabinowitz condition. Using the Nehari manifold method, we show that the problem has at least three nontrivial bounded ground state solutions, all with sign information (positive, negative and nodal).
引用
收藏
相关论文
共 50 条
  • [41] MULTIPLE SOLUTIONS FOR BIHARMONIC ELLIPTIC PROBLEMS WITH THE SECOND HESSIAN
    Fang, Fei
    Ji, Chao
    Zhang, Binlin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [42] Nonlinear Nonhomogeneous Robin Problems with Superlinear Reaction Term
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    ADVANCED NONLINEAR STUDIES, 2016, 16 (04) : 737 - 764
  • [43] MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF TYPE PROBLEMS WITH SINGULARITY
    Liu, Xing
    Sun, Yijing
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (02) : 721 - 733
  • [44] MULTIPLE SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS RESONANT COERCIVE PROBLEMS
    Averna, Diego
    Papageorgiou, Nikolaos S.
    Tornatore, Elisabetta
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (02): : 155 - 178
  • [45] Multibump nodal solutions for an indefinite superlinear elliptic problem
    Girao, Pedro M.
    Gomes, Jose Maria
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (04) : 1001 - 1012
  • [46] Gradient estimates for the double phase problems in the whole space
    Zhang, Bei-Lei
    Ge, Bin
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (12): : 7349 - 7364
  • [47] Anisotropic Dirichlet double phase problems with competing nonlinearities
    Leonardi, S.
    Papageorgiou, Nikolaos S.
    REVISTA MATEMATICA COMPLUTENSE, 2023, 36 (02): : 469 - 490
  • [48] On critical double phase Choquard problems with singular nonlinearity
    Yang, Baoling
    Zhang, Deli
    Liang, Sihua
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [49] Anisotropic Dirichlet double phase problems with competing nonlinearities
    S. Leonardi
    Nikolaos S. Papageorgiou
    Revista Matemática Complutense, 2023, 36 : 469 - 490
  • [50] DOUBLE PHASE PROBLEMS: A SURVEY OF SOME RECENT RESULTS
    Papageorgiou, Nikolaos S.
    OPUSCULA MATHEMATICA, 2022, 42 (02) : 257 - 278