Multiple solutions for superlinear double phase Neumann problems

被引:0
|
作者
Nikolaos S. Papageorgiou
Vicenţiu D. Rădulescu
Youpei Zhang
机构
[1] National Technical University,Department of Mathematics, Zografou Campus
[2] AGH University of Science and Technology,Faculty of Applied Mathematics
[3] Central South University,School of Mathematics and Statistics
[4] University of Craiova,Department of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2022年 / 116卷
关键词
Double phase; Musielak-Orlicz-Sobolev; Constant sign and nodal solutions; Nehari manifold; Superlinear reaction; 35J75 (Primary); 35A16; 35B50; 35B51; 35J20; 35J60; 47J15; 58E05; 58E07 (Secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We study a double phase Neumann problem with a superlinear reaction which need not satisfy the Ambrosetti-Rabinowitz condition. Using the Nehari manifold method, we show that the problem has at least three nontrivial bounded ground state solutions, all with sign information (positive, negative and nodal).
引用
收藏
相关论文
共 50 条
  • [31] Nodal solutions for noncoercive nonlinear Neumann problems with indefinite potential
    He, Tieshan
    Huang, Yehui
    Liang, Kaihao
    Lei, Youfa
    APPLIED MATHEMATICS LETTERS, 2017, 71 : 67 - 73
  • [32] Existence of solutions for singular double phase problems via the Nehari manifold method
    Liu, Wulong
    Dai, Guowei
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (03)
  • [33] Concentration of solutions for fractional double-phase problems: critical and supercritical cases
    Zhang, Youpei
    Tang, Xianhua
    Radulescu, Vicentiu D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 302 : 139 - 184
  • [34] Existence of solutions for singular double phase problems via the Nehari manifold method
    Wulong Liu
    Guowei Dai
    Nikolaos S. Papageorgiou
    Patrick Winkert
    Analysis and Mathematical Physics, 2022, 12
  • [35] MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS TO THE DOUBLE PHASE KIRCHHOFF TYPE PROBLEMS WITH CRITICAL GROWTH
    Yang, Jie
    Liu, Lintao
    Meng, Fengjuan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 481 - 513
  • [36] Existence of solutions for Kirchhoff ff-double phase anisotropic variational problems with variable exponents
    Ma, Wei
    Zhang, Qiongfen
    AIMS MATHEMATICS, 2024, 9 (09): : 23384 - 23409
  • [37] Multiple solutions of an inhomogeneous Neumann problem for an elliptic system with critical Sobolev exponent
    Zhang, Yajing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 2047 - 2059
  • [38] Multiple solutions to nonlocal Neumann boundary problem with sign-changing coefficients
    Hu, Jiaqing
    Mao, Anmin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (02) : 1982 - 1995
  • [39] Multiple nontrivial solutions for a double phase system with concave-convex nonlinearities in subcritical and critical cases
    Feng, Yizhe
    Bai, Zhanbing
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (06)
  • [40] On double phase Kirchhoff problems with singular nonlinearity
    Arora, Rakesh
    Fiscella, Alessio
    Mukherjee, Tuhina
    Winkert, Patrick
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)