Multiple solutions for superlinear double phase Neumann problems

被引:0
作者
Nikolaos S. Papageorgiou
Vicenţiu D. Rădulescu
Youpei Zhang
机构
[1] National Technical University,Department of Mathematics, Zografou Campus
[2] AGH University of Science and Technology,Faculty of Applied Mathematics
[3] Central South University,School of Mathematics and Statistics
[4] University of Craiova,Department of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2022年 / 116卷
关键词
Double phase; Musielak-Orlicz-Sobolev; Constant sign and nodal solutions; Nehari manifold; Superlinear reaction; 35J75 (Primary); 35A16; 35B50; 35B51; 35J20; 35J60; 47J15; 58E05; 58E07 (Secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We study a double phase Neumann problem with a superlinear reaction which need not satisfy the Ambrosetti-Rabinowitz condition. Using the Nehari manifold method, we show that the problem has at least three nontrivial bounded ground state solutions, all with sign information (positive, negative and nodal).
引用
收藏
相关论文
共 37 条
[1]  
Baroni P(2018)Regularity for general functionals with double phase Calc. Var. Partial Differ. Equ. 57 48-499
[2]  
Colombo M(2007)A fibering map approach to a semilinear boundary value problem Electron. J. Differ. Equ. No. 69 9 pp-1066
[3]  
Mingione G(2003)The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function J. Differ. Equ. 193 481-361
[4]  
Brown KJ(2020)Constant sign solutions for double phase problems with superlinear nonlinearity Nonlinear Anal. 195 1117399-4334
[5]  
Wu T(2021)Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold J. Differ. Equ. 274 1037-284
[6]  
Brown KJ(1991)The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations Comm. Partial Differ. Equ. 16 311-30
[7]  
Zhang Y(2018)Existence and multiplicity results for a double phase problem J. Differ. Equ. 265 4311-571
[8]  
Gasiński L(1989)Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions Arch. Rational Mech. Anal. 105 267-764
[9]  
Winkert P(1991)Regularity and existence of solutions of elliptic equations with J. Differ. Equ. 90 1-560
[10]  
Gasiński L(2021)-growth conditions J. Math. Anal. Appl. 501 125197-101