Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops

被引:0
|
作者
Jitender Singh
Sampurna Garai
Shubhashis Das
Jitendra Kumar Thakur
Baishnab Charan Tripathy
机构
[1] National Institute of Plant Genome Research,Department of Biotechnology
[2] International Centre for Genetic Engineering and Biotechnology,undefined
[3] Sharda University,undefined
来源
Photosynthesis Research | 2022年 / 154卷
关键词
C4 Photosynthesis; C3 plants; C4 enzymes; Abiotic stress; CA; NADP-ME; MDH; PEPCK; PPDK;
D O I
暂无
中图分类号
学科分类号
摘要
As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.
引用
收藏
页码:233 / 258
页数:25
相关论文
共 50 条
  • [21] Assessing the potential functions of nocturnal stomatal conductance in C3 and C4 plants
    de Dios, Victor Resco
    Chowdhury, Faqrul I.
    Granda, Elena
    Yao, Yinan
    Tissue, David T.
    NEW PHYTOLOGIST, 2019, 223 (04) : 1696 - 1706
  • [22] Photosynthesis of C3, C4 and CAM plants at low leaf water potential
    Kawamitsu, Y.
    Hiyane, S.
    Uehara, N.
    Fukuzawa, Y.
    Egami, K.
    Matsushima, U.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2005, 141 (03): : S315 - S315
  • [23] Using C4 Photosynthesis to Increase Yield of C3 Crops
    Hibberd, Julian
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2010, 46 : S33 - S34
  • [24] Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C3 and C4 Crops
    Leakey, Andrew D. B.
    Ferguson, John N.
    Pignon, Charles P.
    Wu, Alex
    Jin, Zhenong
    Hammer, Graeme L.
    Lobell, David B.
    ANNUAL REVIEW OF PLANT BIOLOGY, VOL 70, 2019, 70 : 781 - 808
  • [26] Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses
    Hager, Heather A.
    Ryan, Geraldine D.
    Kovacs, Hajnal M.
    Newman, Jonathan A.
    BMC ECOLOGY, 2016, 16
  • [27] Improving the Efficiency of Photosynthetic Carbon Fixation in C3 Plants
    Hanson, Maureen R.
    Lin, Myat T.
    Chaudhuri, Vishal
    Orr, Doug
    Carmo-Silva, Elizabete
    Parry, Martin A. J.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2018, 54 : S19 - S20
  • [28] Oxygen requirement and inhibition of C4 photosynthesis -: An analysis of C4 plants deficient in the C3 and C4 cycles
    Maroco, JP
    Ku, MSB
    Lea, PJ
    Dever, LV
    Leegood, RC
    Furbank, RT
    Edwards, GE
    PLANT PHYSIOLOGY, 1998, 116 (02) : 823 - 832
  • [29] Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants
    Kataria, Sunita
    Guruprasad, K. N.
    Ahuja, Sumedha
    Singh, Bupinder
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2013, 127 : 140 - 152
  • [30] Hydrogen isotopic differences between C3 and C4 land plant lipids: consequences of compartmentation in C4 photosynthetic chemistry and C3 photorespiration
    Zhou, Youping
    Grice, Kliti
    Stuart-Williams, Hilary
    Hocart, Charles H.
    Gessler, Arthur
    Farquhar, Graham D.
    PLANT CELL AND ENVIRONMENT, 2016, 39 (12): : 2676 - 2690