An investigation of penalization and data augmentation to improve convergence of generalized estimating equations for clustered binary outcomes

被引:0
作者
Angelika Geroldinger
Rok Blagus
Helen Ogden
Georg Heinze
机构
[1] Section for Clinical Biometrics,Medical University of Vienna, Center for Medical Statistics, Informatics and Intelligent System
[2] University of Ljubljana,undefined
[3] Institute of Biostatistics and Medical Informatics,undefined
[4] University of Southampton,undefined
[5] School of Mathematical Sciences,undefined
来源
BMC Medical Research Methodology | / 22卷
关键词
Clustered data; Firth’s logistic regression; Generalized estimating equations; Logistic regression; Non-convergence; Separation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 45 条
[1]  
Albert A(1984)On the existence of maximum-likelihood estimates in logistic-regression models Biometrika 71 1-10
[2]  
Anderson JA(1993)Bias reduction of maximum-likelihood-estimates Biometrika 80 27-38
[3]  
Firth D(2014)Small sample GEE estimation of regression parameters for longitudinal data Stat Med 33 3869-3881
[4]  
Paul S(2019)Bias-reduced and separation-proof GEE with small or sparse longitudinal binary data Stat Med 38 2544-2560
[5]  
Zhang XM(2002)A solution to the problem of separation in logistic regression Stat Med 21 2409-2419
[6]  
Mondol MH(2021)Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models Biometrika 108 71-82
[7]  
Rahman MS(2017)Firth's logistic regression with rare events: accurate effect estimates and predictions? Stat Med 36 2302-2317
[8]  
Heinze G(1986)Longitudinal data-analysis using generalized linear-models Biometrika 73 13-22
[9]  
Schemper M(2007)Diagnostic techniques in generalized estimating equations J Stat Comput Simul 77 879-888
[10]  
Kosmidis I(2015)Small sample performance of bias-corrected sandwich estimators for cluster-randomized trials with binary outcomes Stat Med 34 281-296