A Semi-Lagrangian Spectral Method for the Vlasov–Poisson System Based on Fourier, Legendre and Hermite Polynomials

被引:0
|
作者
Lorella Fatone
Daniele Funaro
Gianmarco Manzini
机构
[1] Università degli Studi di Camerino,Dipartimento di Matematica
[2] Università degli Studi di Modena e Reggio Emilia,Dipartimento di Scienze Chimiche e Geologiche
[3] Los Alamos National Laboratory,Group T
来源
Communications on Applied Mathematics and Computation | 2019年 / 1卷
关键词
Spectral methods; Semi-Lagrangian methods; High-order; Hermite functions; Vlasov–Poisson equations; Mass conservation; 65M70; 33C45; 82D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we apply a semi-Lagrangian spectral method for the Vlasov–Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the approximation of the distribution function with respect to the velocity variable. We discuss second-order accurate-in-time schemes, obtained by coupling spectral techniques in the space–velocity domain with a BDF time-stepping scheme. The resulting method possesses good conservation properties, which have been assessed by a series of numerical tests conducted on some standard benchmark problems including the two-stream instability and the Landau damping test cases. In the Hermite case, we also investigate the numerical behavior in dependence of a scaling parameter in the Gaussian weight. Confirming previous results from the literature, our experiments for different representative values of this parameter, indicate that a proper choice may significantly impact on accuracy, thus suggesting that suitable strategies should be developed to automatically update the parameter during the time-advancing procedure.
引用
收藏
页码:333 / 360
页数:27
相关论文
共 22 条
  • [1] A Semi-Lagrangian Spectral Method for the Vlasov-Poisson System Based on Fourier, Legendre and Hermite Polynomials
    Fatone, Lorella
    Funaro, Daniele
    Manzini, Gianmarco
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2019, 1 (03) : 333 - 360
  • [2] A generalized Fourier–Hermite method for the Vlasov–Poisson system
    Katharina Kormann
    Anna Yurova
    BIT Numerical Mathematics, 2021, 61 : 881 - 909
  • [3] A CONSERVATIVE SEMI-LAGRANGIAN HYBRID HERMITE WENO SCHEME FOR LINEAR TRANSPORT EQUATIONS AND THE NONLINEAR VLASOV-POISSON SYSTEM
    Zheng, Nanyi
    Cai, Xiaofeng
    Qiu, Jing-Mei
    Qiu, Jianxian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : A3580 - A3606
  • [4] A truly forward semi-Lagrangian WENO scheme for the Vlasov-Poisson system
    Sirajuddin, David
    Hitchon, William N. G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 392 : 619 - 665
  • [5] Arbitrary-order time-accurate semi-Lagrangian spectral approximations of the Vlasov-Poisson system
    Fatone, L.
    Funaro, D.
    Manzini, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 384 : 349 - 375
  • [6] A generalized Fourier-Hermite method for the Vlasov-Poisson system
    Kormann, Katharina
    Yurova, Anna
    BIT NUMERICAL MATHEMATICS, 2021, 61 (03) : 881 - 909
  • [7] Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system
    Besse, N
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (01) : 350 - 382
  • [8] A semi-Lagrangian adaptive-rank (SLAR) method for linear advection and nonlinear Vlasov-Poisson system
    Zheng, Nanyi
    Hayes, Daniel
    Christlieb, Andrew
    Qiu, Jing-Mei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 532
  • [9] ANALYSIS OF A SEMI-LAGRANGIAN METHOD FOR THE SPHERICALLY SYMMETRIC VLASOV-EINSTEIN SYSTEM
    Bechouche, Philippe
    Besse, Nicolas
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (03): : 573 - 595
  • [10] Semi-Lagrangian particle methods for high-dimensional Vlasov-Poisson systems
    Cottet, Georges-Henri
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 365 : 362 - 375