共 50 条
Study of two-body doubly charmful baryonic B decays with SU(3) flavor symmetry
被引:0
|作者:
Yu-Kuo Hsiao
机构:
[1] Shanxi Normal University,School of Physics and Information Engineering
来源:
关键词:
Bottom Quarks;
Flavour Symmetries;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Within the framework of SU(3) flavor symmetry, we investigate two-body doubly charmful baryonic B→BcB¯c′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ B\to {\textbf{B}}_c{\overline{\textbf{B}}}_c^{\prime } $$\end{document} decays, where BcB¯c′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\textbf{B}}_c{\overline{\textbf{B}}}_c^{\prime } $$\end{document} represents the anti-triplet charmed dibaryon. We determine the SU(3)f amplitudes and calculate BB−→Ξc0Ξ¯c−=3.4−0.9+1.0×10−5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{B}\left({B}^{-}\to {\Xi}_c^0{\overline{\Xi}}_c^{-}\right)=\left({3.4}_{-0.9}^{+1.0}\right)\times {10}^{-5} $$\end{document} and BB¯s0→Λc+Ξ¯c−=3.9−1.0+1.2×10−5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{B}\left({\overline{B}}_s^0\to {\Lambda}_c^{+}{\overline{\Xi}}_c^{-}\right)=\left({3.9}_{-1.0}^{+1.2}\right)\times {10}^{-5} $$\end{document} induced by the single W-emission configuration. We find that the W-exchange amplitude, previously neglected in studies, needs to be taken into account. It can cause a destructive interfering effect with the W-emission amplitude, alleviating the significant discrepancy between the theoretical estimation and experimental data for BB¯0→Λc+Λ¯c−\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{B}\left({\overline{B}}^0\to {\Lambda}_c^{+}{\overline{\Lambda}}_c^{-}\right) $$\end{document}. To test other interfering decay channels, we calculate BB¯s0→Ξc0+Ξ¯c0+=3.0−1.1+1.4×10−4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{B}\left({\overline{B}}_s^0\to {\Xi}_c^{0\left(+\right)}{\overline{\Xi}}_c^{0\left(+\right)}\right)=\left({3.0}_{-1.1}^{+1.4}\right)\times {10}^{-4} $$\end{document} and BB¯0→Ξc0Ξ¯c0=1.5−0.6+0.7×10−5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{B}\left({\overline{B}}^0\to {\Xi}_c^0{\overline{\Xi}}_c^0\right)=\left({1.5}_{-0.6}^{+0.7}\right)\times {10}^{-5} $$\end{document}. We estimate non-zero branching fractions for the pure W-exchange decay channels, specifically BB¯s0→Λc+Λ¯c−=8.1−1.5+1.7×10−5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{B}\left({\overline{B}}_s^0\to {\Lambda}_c^{+}{\overline{\Lambda}}_c^{-}\right)=\left({8.1}_{-1.5}^{+1.7}\right)\times {10}^{-5} $$\end{document} and BB¯0→Ξc+Ξ¯c−=3.0±0.6×10−6\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{B}\left({\overline{B}}^0\to {\Xi}_c^{+}{\overline{\Xi}}_c^{-}\right)=\left(3.0\pm 0.6\right)\times {10}^{-6} $$\end{document}. Additionally, we predict BBc+→Ξc+Ξ¯c0=2.8−0.7+0.9×10−4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{B}\left({B}_c^{+}\to {\Xi}_c^{+}{\overline{\Xi}}_c^0\right)=\left({2.8}_{-0.7}^{+0.9}\right)\times {10}^{-4} $$\end{document} and BBc+→Λc+Ξ¯c0=1.6−0.4+0.5×10−5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{B}\left({B}_c^{+}\to {\Lambda}_c^{+}{\overline{\Xi}}_c^0\right)=\left({1.6}_{-0.4}^{+0.5}\right)\times {10}^{-5} $$\end{document}, which are accessible to experimental facilities such as LHCb.
引用
收藏
相关论文