Positive periodic solution for indefinite singular Liénard equation with p-Laplacian

被引:0
作者
Tiantian Zhou
Bo Du
Haiqing Du
机构
[1] Huaiyin Normal University,Department of Mathematics
来源
Advances in Difference Equations | / 2019卷
关键词
Singularity; Continuation theorem; Periodic solution; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
The efficient conditions guaranteeing the existence of positive T-periodic solution to the p-Laplacian–Liénard equation (ϕp(x′(t)))′+f(x(t))x′(t)+α1(t)g(x(t))=α2(t)xμ(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(\phi _{p}\bigl(x'(t)\bigr) \bigr)'+f \bigl(x(t)\bigr)x'(t)+\alpha _{1}(t)g\bigl(x(t)\bigr)= \frac{ \alpha _{2}(t)}{x^{\mu }(t)}, $$\end{document} are established in this paper. Here ϕp(s)=|s|p−2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{p}(s)=|s|^{p-2}s$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document}, α1,α2∈L([0,T],R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{1},\alpha _{2}\in L([0,T],{R}) $\end{document}, f∈C(R+,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in C({R}_{+},{R})$\end{document} (R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${R} _{+}$\end{document} stands for positive real numbers) with a singularity at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=0$\end{document}, g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(x)$\end{document} is continuous on (0;+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(0;+\infty )$\end{document}, μ is a constant with μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu >0$\end{document}, the signs of α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{1}$\end{document} and α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{2} $\end{document} are allowed to change. The approach is based on the continuation theorem for p-Laplacian-like nonlinear systems obtained by Manásevich and Mawhin in (J. Differ. Equ. 145:367–393, 1998).
引用
收藏
相关论文
共 50 条
[41]   Periodic solutions of p-Laplacian equations with singularities [J].
Lu, Shipin ;
Zhong, Tao ;
Gao, Yajing .
ADVANCES IN DIFFERENCE EQUATIONS, 2016,
[42]   Periodic solutions of the retarded Liénard equation [J].
Bo Zhang .
Annali di Matematica Pura ed Applicata, 1997, 172 :25-42
[43]   A necessary and sufficient condition for existence and uniqueness of periodic solutions for a p-Laplacian Lienard equation [J].
Zhang, Liehui ;
Wang, Yong ;
Tian, Junkang ;
Zhang, Liang .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2011, (62) :1-7
[44]   Existence of periodic solutions for a fourth-order p-Laplacian equation with a deviating argument [J].
Lu, Shiping ;
Jin, Shan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) :513-520
[45]   Periodic solutions for p-Laplacian neutral differential equation with multiple delay and variable coefficients [J].
Zhonghua Bi ;
Zhibo Cheng ;
Shaowen Yao .
Advances in Difference Equations, 2019
[46]   Periodic Solutions for a Kind of Duffing Type p-Laplacian Neutral Equation [J].
Du, Bo ;
Hu, Xueping .
ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (01) :167-179
[47]   Periodic solutions for p-Laplacian differential equation with multiple deviating arguments [J].
Cheung, WS ;
Ren, JL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (04) :727-742
[48]   Existence and uniqueness of periodic solutions for Rayleigh type p-Laplacian equation [J].
He, Zhanbing ;
Wang, Wentao ;
Yi, Xuejun .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) :558-564
[49]   Existence of periodic solutions for p-Laplacian equation without growth restrictions [J].
Minghe Pei ;
Libo Wang .
Zeitschrift für angewandte Mathematik und Physik, 2021, 72
[50]   Periodic solutions for p-Laplacian neutral differential equation with multiple delay and variable coefficients [J].
Bi, Zhonghua ;
Cheng, Zhibo ;
Yao, Shaowen .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)