Positive periodic solution for indefinite singular Liénard equation with p-Laplacian

被引:0
作者
Tiantian Zhou
Bo Du
Haiqing Du
机构
[1] Huaiyin Normal University,Department of Mathematics
来源
Advances in Difference Equations | / 2019卷
关键词
Singularity; Continuation theorem; Periodic solution; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
The efficient conditions guaranteeing the existence of positive T-periodic solution to the p-Laplacian–Liénard equation (ϕp(x′(t)))′+f(x(t))x′(t)+α1(t)g(x(t))=α2(t)xμ(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(\phi _{p}\bigl(x'(t)\bigr) \bigr)'+f \bigl(x(t)\bigr)x'(t)+\alpha _{1}(t)g\bigl(x(t)\bigr)= \frac{ \alpha _{2}(t)}{x^{\mu }(t)}, $$\end{document} are established in this paper. Here ϕp(s)=|s|p−2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{p}(s)=|s|^{p-2}s$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document}, α1,α2∈L([0,T],R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{1},\alpha _{2}\in L([0,T],{R}) $\end{document}, f∈C(R+,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in C({R}_{+},{R})$\end{document} (R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${R} _{+}$\end{document} stands for positive real numbers) with a singularity at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=0$\end{document}, g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(x)$\end{document} is continuous on (0;+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(0;+\infty )$\end{document}, μ is a constant with μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu >0$\end{document}, the signs of α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{1}$\end{document} and α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{2} $\end{document} are allowed to change. The approach is based on the continuation theorem for p-Laplacian-like nonlinear systems obtained by Manásevich and Mawhin in (J. Differ. Equ. 145:367–393, 1998).
引用
收藏
相关论文
共 50 条
[31]   Positive periodic solutions for p-Laplacian neutral differential equations with a singularity [J].
Li, Zhiyan ;
Kong, Fanchao .
BOUNDARY VALUE PROBLEMS, 2017,
[32]   EXISTENCE OF POSITIVE SOLUTIONS FOR A SINGULAR p-LAPLACIAN DIRICHLET PROBLEM [J].
Zhou, Wenshu .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
[33]   MULTIPLICITY OF PERIODIC SOLUTIONS FOR DYNAMIC LIÉNARD EQUATIONS WITH DELAY AND SINGULAR φ-LAPLACIAN OF RELATIVISTIC TYPE [J].
Amster, P. ;
Kuna, M. P. ;
Santos, D. P. .
FIXED POINT THEORY, 2024, 25 (01) :31-42
[34]   EXISTENCE OF PERIODIC SOLUTION TO GENERALIZED NEUTRAL LINARD DIFFERENTIAL EQUATION [J].
Zhibo Cheng ;
Yun Xin ;
Yujie Fu .
AnnalsofDifferentialEquations, 2014, 30 (03) :258-266
[35]   Periodic solutions for p-Laplacian Lienard equation with a deviating argument [J].
Cheung, WS ;
Ren, JL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (1-2) :107-120
[36]   On the existence of periodic solutions for p-Laplacian generalized Lienard equation [J].
Cheung, WS ;
Ren, JL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (01) :65-75
[37]   On the existence of periodic solutions to a p-Laplacian neutral differential equation in the critical case [J].
Lu, Shiping .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :2884-2893
[38]   Existence and uniqueness of periodic solution for prescribed mean curvature Rayleigh type p-Laplacian equation [J].
Wang D. .
Journal of Applied Mathematics and Computing, 2014, 46 (1-2) :181-200
[39]   PERIODIC SOLUTIONS FOR A SINGULAR LIENARD EQUATION WITH INDEFINITE WEIGHT [J].
Lu, Shiping ;
Xue, Runyu .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) :203-218
[40]   Periodic solutions of p-Laplacian equations with singularities [J].
Shipin Lu ;
Tao Zhong ;
Yajing Gao .
Advances in Difference Equations, 2016