Positive periodic solution for indefinite singular Liénard equation with p-Laplacian

被引:0
作者
Tiantian Zhou
Bo Du
Haiqing Du
机构
[1] Huaiyin Normal University,Department of Mathematics
来源
Advances in Difference Equations | / 2019卷
关键词
Singularity; Continuation theorem; Periodic solution; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
The efficient conditions guaranteeing the existence of positive T-periodic solution to the p-Laplacian–Liénard equation (ϕp(x′(t)))′+f(x(t))x′(t)+α1(t)g(x(t))=α2(t)xμ(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(\phi _{p}\bigl(x'(t)\bigr) \bigr)'+f \bigl(x(t)\bigr)x'(t)+\alpha _{1}(t)g\bigl(x(t)\bigr)= \frac{ \alpha _{2}(t)}{x^{\mu }(t)}, $$\end{document} are established in this paper. Here ϕp(s)=|s|p−2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{p}(s)=|s|^{p-2}s$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document}, α1,α2∈L([0,T],R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{1},\alpha _{2}\in L([0,T],{R}) $\end{document}, f∈C(R+,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in C({R}_{+},{R})$\end{document} (R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${R} _{+}$\end{document} stands for positive real numbers) with a singularity at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=0$\end{document}, g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(x)$\end{document} is continuous on (0;+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(0;+\infty )$\end{document}, μ is a constant with μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu >0$\end{document}, the signs of α1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{1}$\end{document} and α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha _{2} $\end{document} are allowed to change. The approach is based on the continuation theorem for p-Laplacian-like nonlinear systems obtained by Manásevich and Mawhin in (J. Differ. Equ. 145:367–393, 1998).
引用
收藏
相关论文
共 50 条
[21]   Positive solution for higher-order singular infinite-point fractional differential equation with p-Laplacian [J].
Zhong, Qiuyan ;
Zhang, Xingqiu .
ADVANCES IN DIFFERENCE EQUATIONS, 2016, :1-11
[22]   Multiplicity of solutions for a singular p-laplacian elliptic equation [J].
Zhou, Wen-shu ;
Wei, Xiao-dan .
ANNALES POLONICI MATHEMATICI, 2010, 99 (02) :157-180
[23]   Existence of positive periodic solutions for Liénard equation with a singularity of repulsive type [J].
Zhu, Yu .
BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
[24]   ON THE EXISTENCE OF PERIODIC SOLUTIONS TO A P-LAPLACIAN RAYLEIGH EQUATION [J].
Du, Bo ;
Lu, Shiping .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (04) :253-266
[25]   Existence of Positive Periodic Solutions of Fourth-order Singular p-Laplacian Neutral Functional Differential Equations [J].
Kong, Fanchao ;
Lu, Shiping .
FILOMAT, 2017, 31 (18) :5855-5868
[26]   Existence and uniqueness of a periodic solution to an indefinite attractive singular equation [J].
Robert Hakl ;
Manuel Zamora .
Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 :995-1009
[27]   Existence and uniqueness of a periodic solution to an indefinite attractive singular equation [J].
Hakl, Robert ;
Zamora, Manuel .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (03) :995-1009
[28]   Existence of periodic solutions for a p-Laplacian neutral functional differential equation [J].
Liang Feng ;
Guo Lixiang ;
Lu Shiping .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :427-436
[29]   Existence of periodic solutions for a p-Laplacian neutral functional differential equation [J].
Lu, Shiping .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :231-243
[30]   Positive periodic solutions for p-Laplacian neutral differential equations with a singularity [J].
Zhiyan Li ;
Fanchao Kong .
Boundary Value Problems, 2017