Homogenization of Monotone Systems of Non-Coercive Hamilton-Jacobi Equations

被引:0
作者
Junfang Wang
Peihao Zhao
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Indian Journal of Pure and Applied Mathematics | 2018年 / 49卷
关键词
Viscosity solutions; non-coercive; Hamilton-Jacobi equations; homogenization;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study homogenization for a class of monotone systems of first-order timedependent Hamilton-Jacobi equations in the case of non-coercive Hamiltonians. And we prove the uniform convergence of the solution of oscillating systems to the solution of the homogenized systems.
引用
收藏
页码:285 / 300
页数:15
相关论文
共 29 条
[1]  
Imbert C.(2008)Homogenization of first-order equations with Arch. Rational Mech. Anal. 187 49-89
[2]  
Monneau R.(2010)/ ESAIM Control Optim. Calc. Var. 16 58-76
[3]  
Camili F.(1990)-periodic Hamiltonians, Part I: local equations Indiana. Univ. Math. J. 39 443-466
[4]  
Ley O.(2001)Homogenization of monotone systems of Hamilton-Jacobi equations SIAM J. Math. Anal. 32 1311-1323
[5]  
Loreti P.(2007)Uniqueness and regularity results for first-order Hamilton-Jacobi equations Calc. Var. Partial Differential Equations 30 449-466
[6]  
Barles G.(1991)Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations Proc. London Math. Soc. (3) 63 212-240
[7]  
Barles G.(1991)Some homogenization results for non-coercive Hamilton-Jacobi equations Comm. Partial Differential Equations 16 1095-1128
[8]  
Souganidis P. E.(1992)Viscosity solutions for weakly coupled systems of Hamilton-Jacobi equations Differential Integral Equations 5 1-24
[9]  
Barles G.(2001)Viscosity solutions for monotone syetems of second-order elliptic PDEs Indiana Univ. Math. J. 50 1113-1129
[10]  
Engler H.(2006)Perron’s method for monotone systems of second-order elliptic partial differential equations NoDEA Nonlinear Differential Equations Appl. 13 1-21