Boundedness in a quasilinear chemotaxis–haptotaxis model of parabolic–parabolic–ODE type

被引:0
作者
Long Lei
Zhongping Li
机构
[1] China West Normal University,College of Mathematics and Information
来源
Boundary Value Problems | / 2019卷
关键词
Chemotaxis; Haptotaxis; Nonlinear diffusion; Boundedness; Logistic source; Nonlinear production; 35B65; 35K55; 35Q92; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the boundedness of solutions to the following quasilinear chemotaxis–haptotaxis model of parabolic–parabolic–ODE type: {ut=∇⋅(D(u)∇u)−χ∇⋅(u∇v)−ξ∇⋅(u∇w)+μu(1−ur−1−w),x∈Ω,t>0,vt=Δv−v+uη,x∈Ω,t>0,wt=−vw,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} u_{t}=\nabla \cdot (D(u)\nabla u)-\chi \nabla \cdot (u\nabla v)- \xi \nabla \cdot (u\nabla w)+\mu u(1-u^{r-1}-w),& x\in \varOmega , t>0, \\ v_{t}=\Delta v-v+u^{\eta },& x\in \varOmega , t>0, \\ w_{t}=-vw, &x\in \varOmega , t>0, \end{cases} $$\end{document} under zero-flux boundary conditions in a smooth bounded domain Ω⊂Rn(n≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varOmega \subset \mathbb{R}^{n}(n\geq 2)$\end{document}, with parameters r≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r\geq 2$\end{document}, η∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta \in (0,1]$\end{document} and the parameters χ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi >0$\end{document}, ξ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\xi >0$\end{document}, μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu >0$\end{document}. The diffusivity D(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D(u)$\end{document} is assumed to satisfy D(u)≥δu−α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D(u)\geq \delta u^{-\alpha }$\end{document}, D(0)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D(0)>0$\end{document} for all u>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u>0$\end{document} with some α∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in \mathbb{R}$\end{document} and δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta >0 $\end{document}. It is proved that if α<n+2−2nη2+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha <\frac{n+2-2n\eta }{2+n}$\end{document}, then, for sufficiently smooth initial data (u0,v0,w0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(u_{0},v_{0},w_{0})$\end{document}, the corresponding initial-boundary problem possesses a unique global-in-time classical solution which is uniformly bounded.
引用
收藏
相关论文
共 85 条
  • [1] Alikakos N.D.(1979)Lp-bounds of solution of reaction diffusion equation Partial Differ. Equ. 4 827-868
  • [2] Cao X.(2014)Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with logistic source J. Math. Anal. Appl. 412 181-188
  • [3] Cao X.(2016)Boundedness in a three-dimensional chemotaxis–haptotaxis system Z. Angew. Math. Phys. 67 1-13
  • [4] Chaplain M.A.J.(2005)Mathematical modelling of cancer invasion of tissue: the role of the urokinase plasminogen activation system Math. Models Methods Appl. Sci. 15 1685-1734
  • [5] Lolas G.(2006)Mathematical modelling of tissue invasion: dynamic heterogeneity Netw. Heterog. Media 1 399-439
  • [6] Chaplain M.A.J.(2013)Convergence of a cancer invasion model to a logistic chemotaxis model Math. Models Methods Appl. Sci. 23 103-165
  • [7] Lolas G.(2017)Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition Appl. Math. Lett. 64 1-7
  • [8] Hillen T.(2014)Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains J. Differ. Equ. 256 2993-3010
  • [9] Painter K.J.(1970)Initiation of slim mold aggregation viewed as an instability J. Theor. Biol. 26 399-415
  • [10] Winkler M.(2016)Boundedness in a chemotaxis–haptotaxis model with nonlinear diffusion Nonlinearity 29 1564-1595