Exosomes Derived from lncRNA TCTN2-Modified Mesenchymal Stem Cells Improve Spinal Cord Injury by miR-329-3p/IGF1R Axis

被引:0
作者
Jian Liu
Mingxia Lin
Feng Qiao
Chenghua Zhang
机构
[1] Hainan General Hospital,Department of Spine Surgery
[2] Jinan University,Department of laboratory
[3] The Fifth People Hospital of Hainan Province,Department of Endoscopy
[4] Jilin Cancer Hospital,undefined
来源
Journal of Molecular Neuroscience | 2022年 / 72卷
关键词
Spinal cord injury; TCTN2; miR-329-3p; IGF1R; MSCs; Exosomes;
D O I
暂无
中图分类号
学科分类号
摘要
Mesenchymal stem cells (MSCs)-derived exosomes play significant roles in alleviating spinal cord injury (SCI). Previous study showed that long non-coding RNA tectonic family member 2 (TCTN2) was able to relieve SCI. Herein, whether TCTN2 exerted its roles in functional recovery after SCI via exosomes derived from MSCs was explored. The SCI model was established in rats, and the neurological function was evaluated using the Basso, Beattie, and Bresnahan (BBB) scoring. Lipopolysaccharide (LPS)-induced differentiated PC12 cells were used as an in vitro model for neurotoxicity research. The expression of genes and proteins was detected by qRT-PCR and Western blot. Exosomes were isolated by ultracentrifugation and qualified by TEM and Western blot. In vitro assays were performed using CCK-8 assay, EdU assay, and flow cytometry, respectively. Dual-luciferase reporter assay and RIP assay were used to confirm the target relationship between miR-329-3p and TCTN2 or insulin-like growth factor1 receptor (IGF1R). TCTN2 expression was down-regulated in SCI model rat and lipopolysaccharide (LPS)-stimulated PC12 cells. MSCs produced exosomes and could package TCTN2 into secreted exosomes. Tail vein injection of TCTN2 exosomes into rats significantly improved functional recovery of SCI. Meanwhile, TCTN2 exosomes treatment alleviated LPS-induced neuronal apoptosis, inflammation, and oxidative stress in vitro. Additionally, TCTN2 targeted miR-329-3p and subsequently regulated the expression of its target IGF1R. Rescue assays suggested that miR-329-3p/IGF1R axis mediated the beneficial effects of TCTN2 exosomes on LPS-treated PC12 cells. In all, exosomes derived from TCTN2-modified MSCs could improve functional recovery of SCI in vivo and attenuate LPS-induced neuronal apoptosis, inflammation, and oxidative stress in vitro via miR-329-3p/IGF1R axis, suggesting a novel insight into the development of MSC-exosomes-based therapy for SCI.
引用
收藏
页码:482 / 495
页数:13
相关论文
共 50 条
  • [31] Exosomes from adipose-derived mesenchymal stem cells improve liver fibrosis by regulating the miR-20a-5p/TGFBR2 axis to affect the p38 MAPK/NF-κB pathway
    Gan, Lihong
    Zheng, Li
    Yao, Ling
    Lei, Ling
    Huang, Yaqin
    Zeng, Zhiping
    Fang, Nian
    CYTOKINE, 2023, 172
  • [32] Hypoxia-treated umbilical mesenchymal stem cell alleviates spinal cord ischemia-reperfusion injury in SCI by circular RNA circOXNAD1/miR-29a-3p/FOXO3a axis
    Wang, Xiujuan
    Li, Wei
    Hao, MingYuan
    Yang, Ying
    Xu, YongSheng
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2023, 34
  • [33] Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Attenuate Myocardial Infarction Injury via miR-24-3p-Promoted M2 Macrophage Polarization
    Zhu, Feng
    Chen, Yihuan
    Li, Jingjing
    Yang, Ziying
    Lin, Yang
    Jiang, Boxuan
    Shao, Lianbo
    Hu, Shengshou
    Shen, Zhenya
    ADVANCED BIOLOGY, 2022, 6 (11):
  • [34] Exosomes from human-bone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p
    Zhu, Gongmin
    Pei, Lijiao
    Lin, Fan
    Yin, Hubin
    Li, Xinyuan
    He, Weiyang
    Liu, Nian
    Gou, Xin
    JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (12) : 23736 - 23749
  • [35] Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization
    Liu, Wei
    Rong, Yuluo
    Wang, Jiaxing
    Zhou, Zheng
    Ge, Xuhui
    Ji, Chengyue
    Jiang, Dongdong
    Gong, Fangyi
    Li, Linwei
    Chen, Jian
    Zhao, Shujie
    Kong, Fanqi
    Gu, Changjiang
    Fan, Jin
    Cai, Weihua
    JOURNAL OF NEUROINFLAMMATION, 2020, 17 (01)
  • [36] Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization
    Wei Liu
    Yuluo Rong
    Jiaxing Wang
    Zheng Zhou
    Xuhui Ge
    Chengyue Ji
    Dongdong Jiang
    Fangyi Gong
    Linwei Li
    Jian Chen
    Shujie Zhao
    Fanqi Kong
    Changjiang Gu
    Jin Fan
    Weihua Cai
    Journal of Neuroinflammation, 17
  • [37] miR-124-3p delivered by exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells inhibits ferroptosis to attenuate ischemia–reperfusion injury in steatotic grafts
    Longlong Wu
    Xuan Tian
    Huaiwen Zuo
    Weiping Zheng
    Xiang Li
    Mengshu Yuan
    Xiaorong Tian
    Hongli Song
    Journal of Nanobiotechnology, 20
  • [38] lncRNA XIST inhibition promotes M2 polarization of microglial and aggravates the spinal cord injury via regulating miR-124-3p / IRF1 axis
    Yang, Jin
    Gong, Zhiqiang
    Dong, Junjie
    Bi, Hangchuan
    Wang, Bing
    Du, Kaili
    Zhang, Chunqiang
    Chen, Lingqiang
    HELIYON, 2023, 9 (07)
  • [39] Extracellular Vesicles Derived from Epidural Fat-Mesenchymal Stem Cells Attenuate NLRP3 Inflammasome Activation and Improve Functional Recovery After Spinal Cord Injury
    Huang, Jiang-Hu
    Fu, Chun-Hui
    Xu, Yang
    Yin, Xiao-Ming
    Cao, Yong
    Lin, Fei-Yue
    NEUROCHEMICAL RESEARCH, 2020, 45 (04) : 760 - 771
  • [40] LncRNA SNHG14 Delivered by Bone Marrow Mesenchymal Stem Cells-Secreted Exosomes Regulates Osteogenesis and Adipogenesis in Osteoporosis by Mediating the miR-27a-3p/LMNB1 Axis
    Tang, Jin-Shan
    Yu, Huai-Xi
    Ruan, Ru-Xin
    Chen, Rui
    Zhu, Zi-Qiang
    KAOHSIUNG JOURNAL OF MEDICAL SCIENCES, 2025,