Exosomes Derived from lncRNA TCTN2-Modified Mesenchymal Stem Cells Improve Spinal Cord Injury by miR-329-3p/IGF1R Axis

被引:0
作者
Jian Liu
Mingxia Lin
Feng Qiao
Chenghua Zhang
机构
[1] Hainan General Hospital,Department of Spine Surgery
[2] Jinan University,Department of laboratory
[3] The Fifth People Hospital of Hainan Province,Department of Endoscopy
[4] Jilin Cancer Hospital,undefined
来源
Journal of Molecular Neuroscience | 2022年 / 72卷
关键词
Spinal cord injury; TCTN2; miR-329-3p; IGF1R; MSCs; Exosomes;
D O I
暂无
中图分类号
学科分类号
摘要
Mesenchymal stem cells (MSCs)-derived exosomes play significant roles in alleviating spinal cord injury (SCI). Previous study showed that long non-coding RNA tectonic family member 2 (TCTN2) was able to relieve SCI. Herein, whether TCTN2 exerted its roles in functional recovery after SCI via exosomes derived from MSCs was explored. The SCI model was established in rats, and the neurological function was evaluated using the Basso, Beattie, and Bresnahan (BBB) scoring. Lipopolysaccharide (LPS)-induced differentiated PC12 cells were used as an in vitro model for neurotoxicity research. The expression of genes and proteins was detected by qRT-PCR and Western blot. Exosomes were isolated by ultracentrifugation and qualified by TEM and Western blot. In vitro assays were performed using CCK-8 assay, EdU assay, and flow cytometry, respectively. Dual-luciferase reporter assay and RIP assay were used to confirm the target relationship between miR-329-3p and TCTN2 or insulin-like growth factor1 receptor (IGF1R). TCTN2 expression was down-regulated in SCI model rat and lipopolysaccharide (LPS)-stimulated PC12 cells. MSCs produced exosomes and could package TCTN2 into secreted exosomes. Tail vein injection of TCTN2 exosomes into rats significantly improved functional recovery of SCI. Meanwhile, TCTN2 exosomes treatment alleviated LPS-induced neuronal apoptosis, inflammation, and oxidative stress in vitro. Additionally, TCTN2 targeted miR-329-3p and subsequently regulated the expression of its target IGF1R. Rescue assays suggested that miR-329-3p/IGF1R axis mediated the beneficial effects of TCTN2 exosomes on LPS-treated PC12 cells. In all, exosomes derived from TCTN2-modified MSCs could improve functional recovery of SCI in vivo and attenuate LPS-induced neuronal apoptosis, inflammation, and oxidative stress in vitro via miR-329-3p/IGF1R axis, suggesting a novel insight into the development of MSC-exosomes-based therapy for SCI.
引用
收藏
页码:482 / 495
页数:13
相关论文
共 205 条
[51]  
Slaper-Cortenbach I(undefined)undefined undefined undefined undefined-undefined
[52]  
Marini FC(undefined)undefined undefined undefined undefined-undefined
[53]  
Deans RJ(undefined)undefined undefined undefined undefined-undefined
[54]  
Krause DS(undefined)undefined undefined undefined undefined-undefined
[55]  
Keating A(undefined)undefined undefined undefined undefined-undefined
[56]  
Hu X(undefined)undefined undefined undefined undefined-undefined
[57]  
Wu D(undefined)undefined undefined undefined undefined-undefined
[58]  
He X(undefined)undefined undefined undefined undefined-undefined
[59]  
Zhao H(undefined)undefined undefined undefined undefined-undefined
[60]  
He Z(undefined)undefined undefined undefined undefined-undefined