Painleve´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{\mathrm{e}}$$\end{document} integrable condition, auto-Bäcklund transformations, Lax pair, breather, lump-periodic-wave and kink-wave solutions of a (3+1)-dimensional Hirota–Satsuma–Ito-like system for the shallow water waves

被引:0
作者
Yu-Qi Chen
Bo Tian
Qi-Xing Qu
Yan Sun
Su-Su Chen
Cong-Cong Hu
机构
[1] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications, and School of Science
[2] School of Information,undefined
[3] University of International Business and Economics,undefined
关键词
Shallow water waves; (3+1)-dimensional Hirota–Satsuma–Ito-like system; Painlevé integrable condition; Auto-Bäcklund transformations; Lax pair; Breather and kink-wave solutions; Lump-periodic-wave solutions;
D O I
10.1007/s11071-021-06686-8
中图分类号
学科分类号
摘要
In this paper, we investigate a (3+1)-dimensional Hirota–Satsuma–Ito-like system for the shallow water waves. We obtain a Painleve´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{\mathrm{e}}$$\end{document} integrable condition of the system. By virtue of the truncated Painleve´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{\mathrm{e}}$$\end{document} expansion, we get an auto-Bäcklund transformation under certain Painleve´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{\mathrm{e}}$$\end{document} integrable condition. Based on the bilinear form, we give a bilinear auto-Bäcklund transformation and a Lax pair under certain Painleve´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{\mathrm{e}}$$\end{document} integrable condition. We obtain that a breather and kink waves propagate under certain Painleve´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{\mathrm{e}}$$\end{document} integrable condition. The breather has a peak and a trough and the height of the kink wave periodically increases or decreases during the propagation. Furthermore, we get the lump-periodic-wave and solitary-wave solutions and observe that the lump-periodic and solitary waves propagate under certain Painleve´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{\mathrm{e}}$$\end{document} integrable conditions. During the propagation, the heights of the lump-periodic waves keep unchanged and height of the solitary wave periodically increases or decreases.
引用
收藏
页码:765 / 773
页数:8
相关论文
共 108 条
[1]  
Osman MS(2019)One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation Nonlinear Dyn. 96 1491-1496
[2]  
Sendi CT(2019)Application of the ITEM for solving three nonlinear evolution equations arising in fluid mechanics Nonlinear Dyn. 95 669-684
[3]  
Manafian J(2020)Effect of local Peregrine soliton emergence on statistics of random waves in the one-dimensional focusing nonlinear Schrödinger equation Phys. Rev. E 101 012209-241
[4]  
Mobasseri H(2019)On the quintic time-dependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics Nonlinear Dyn. 96 229-282
[5]  
Mirzazadeh M(2019)Quintic time-dependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons Nonlinear Dyn. 98 269-1052
[6]  
Zhou Q(2019)Formation, gravitational clustering, and interactions of nonrelativistic solitons in an expanding universe Phys. Rev. D 100 063507-603
[7]  
Bekir A(2020)Bifurcations of small-amplitude supernonlinear waves of the mKdV and modified Gardner equations in a three-component electron-ion plasma Phys. Plasmas 27 012105-208
[8]  
Tikan A(2020)Breather and solitons waves in optical fibers via exponential time differencing method Commun. Nonlinear Sci. 85 105237-2540
[9]  
Jia TT(2020)Solitons and periodic waves for the (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics Nonlinear Dyn. 99 1039-612
[10]  
Gao YT(2019)Convexification method for an inverse scattering problem and its performance for experimental backscatter data for buried targets SIAM J. Imaging Sci. 12 576-351