Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI

被引:0
|
作者
Burak Kocak
Emine Sebnem Durmaz
Pinar Kadioglu
Ozge Polat Korkmaz
Nil Comunoglu
Necmettin Tanriover
Naci Kocer
Civan Islak
Osman Kizilkilic
机构
[1] Istanbul Training and Research Hospital,Department of Radiology
[2] Istanbul University-Cerrahpasa,Department of Radiology, Cerrahpasa Medical Faculty
[3] Istanbul University-Cerrahpasa,Department of Endocrinology and Metabolism, Cerrahpasa Medical Faculty
[4] Istanbul University-Cerrahpasa,Department of Pathology, Cerrahpasa Medical Faculty
[5] Istanbul University-Cerrahpasa,Department of Neurosurgery, Cerrahpasa Medical Faculty
来源
European Radiology | 2019年 / 29卷
关键词
Acromegaly; Growth hormone-secreting pituitary adenoma; Machine learning; Magnetic resonance imaging; Somatostatin;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2731 / 2739
页数:8
相关论文
共 33 条
  • [21] Deep learning-based segmentation of kidneys and renal cysts on T2-weighted MRI from patients with autosomal dominant polycystic kidney disease
    Sore, Remi
    Cathier, Pascal
    Vlachomitrou, Anna Sesilia
    Bailleux, Jerome
    Arnaud, Karine
    Juillard, Laurent
    Lemoine, Sandrine
    Rouviere, Olivier
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [22] Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas
    Alis, Deniz
    Bagcilar, Omer
    Senli, Yeseren Deniz
    Yergin, Mert
    Isler, Cihan
    Kocer, Naci
    Islak, Civan
    Kizilkilic, Osman
    JAPANESE JOURNAL OF RADIOLOGY, 2020, 38 (02) : 135 - 143
  • [23] Deep learning-based differentiation of peripheral high-flow and low-flow vascular malformations in T2-weighted short tau inversion recovery MRI
    Hammer, Simone
    Nunes, Danilo Weber
    Hammer, Michael
    Zeman, Florian
    Akers, Michael
    Goetza, Andrea
    Balla, Annika
    Doppler, Michael Christian
    Fellner, Claudia
    da Silvaa, Natascha Platz Batista
    Thurn, Sylvia
    Verloh, Niklas
    Stroszczynski, Christian
    Wohlgemuth, Walter Alexander
    Palm, Christoph
    Uller, Wibke
    CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 2024, 87 (02) : 221 - 235
  • [24] Texture analysis using machine learning-based 3-T magnetic resonance imaging for predicting recurrence in breast cancer patients treated with neoadjuvant chemotherapy
    Eun, Na Lae
    Kang, Daesung
    Son, Eun Ju
    Youk, Ji Hyun
    Kim, Jeong-Ah
    Gweon, Hye Mi
    EUROPEAN RADIOLOGY, 2021, 31 (09) : 6916 - 6928
  • [25] Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning–based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence
    Krishna Shanbhogue
    Angela Tong
    Paul Smereka
    Dominik Nickel
    Simon Arberet
    Rebecca Anthopolos
    Hersh Chandarana
    European Radiology, 2021, 31 : 8447 - 8457
  • [26] MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC)
    Crimi, Filippo
    Capelli, Giulia
    Spolverato, Gaya
    Bao, Quoc Riccardo
    Florio, Anna
    Milite Rossi, Sebastiano
    Cecchin, Diego
    Albertoni, Laura
    Campi, Cristina
    Pucciarelli, Salvatore
    Stramare, Roberto
    RADIOLOGIA MEDICA, 2020, 125 (12): : 1216 - 1224
  • [27] MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC)
    Filippo Crimì
    Giulia Capelli
    Gaya Spolverato
    Quoc Riccardo Bao
    Anna Florio
    Sebastiano Milite Rossi
    Diego Cecchin
    Laura Albertoni
    Cristina Campi
    Salvatore Pucciarelli
    Roberto Stramare
    La radiologia medica, 2020, 125 : 1216 - 1224
  • [28] Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status
    Kocak, Burak
    Durmaz, Emine Sebnem
    Ates, Ece
    Sel, Ipek
    Gunes, Saime Turgut
    Kaya, Ozlem Korkmaz
    Zeynalova, Amalya
    Kilickesmez, Ozgur
    EUROPEAN RADIOLOGY, 2020, 30 (02) : 877 - 886
  • [29] Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis
    Iwamura, Masatoshi
    Ide, Satoru
    Sato, Kenya
    Kakuta, Akihisa
    Tatsuo, Soichiro
    Nozaki, Atsushi
    Wakayama, Tetsuya
    Ueno, Tatsuya
    Haga, Rie
    Kakizaki, Misako
    Yokoyama, Yoko
    Yamauchi, Ryoichi
    Tsushima, Fumiyasu
    Shibutani, Koichi
    Tomiyama, Masahiko
    Kakeda, Shingo
    MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2024, 23 (02) : 184 - 192
  • [30] Texture Analysis of Fat-Suppressed T2-Weighted Magnetic Resonance Imaging and Use of Machine Learning to Discriminate Nasal and Paranasal Sinus Small Round Malignant Cell Tumors
    Chen, Chen
    Qin, Yuhui
    Cheng, Junying
    Gao, Fabao
    Zhou, Xiaoyue
    FRONTIERS IN ONCOLOGY, 2021, 11