Using principal component analysis to explore multi-variable relationships

被引:0
|
作者
Patricia E. Fraino
机构
[1] University of Calgary,Department of Geoscience
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Patricia Fraino describes how principal component analysis can be used to understand data in the Earth and environmental sciences.
引用
收藏
页码:294 / 294
相关论文
共 50 条
  • [1] Using principal component analysis to explore multi-variable relationships
    Fraino, Patricia E.
    NATURE REVIEWS EARTH & ENVIRONMENT, 2023, 4 (05) : 294 - 294
  • [2] The use of principal component analysis to explore relationships between factors - Reply
    Schatz, M
    Cook, EF
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2006, 117 (01) : 221 - 222
  • [3] Using principal component analysis to explore co-variation of vowels
    Wilson Black, Joshua
    Brand, James
    Hay, Jen
    Clark, Lynn
    LANGUAGE AND LINGUISTICS COMPASS, 2023, 17 (01):
  • [4] MULTI-VARIABLE QUATERNIONIC SPECTRAL ANALYSIS
    Cho, Ilwoo
    Jorgensen, Palle E. T.
    OPUSCULA MATHEMATICA, 2021, 41 (03) : 335 - 379
  • [5] Identifying multi-variable relationships based on the maximal information coefficient
    Shao, Fubo
    Li, Keping
    Dong, Yulin
    INTELLIGENT DATA ANALYSIS, 2017, 21 (01) : 151 - 166
  • [6] Identifying product shape relationships using principal component analysis
    Orsborn, Seth
    Boatwright, Peter
    Cagan, Jonathan
    RESEARCH IN ENGINEERING DESIGN, 2008, 18 (04) : 163 - 180
  • [7] Identifying product shape relationships using principal component analysis
    Seth Orsborn
    Peter Boatwright
    Jonathan Cagan
    Research in Engineering Design, 2008, 18 : 163 - 180
  • [8] Determination of independent variable number in multi-variable statistical analysis
    State Key Laboratory of Pulp and Paper Engineering, South China Univ. of Tech., Guangzhou 510640, China
    不详
    Huanan Ligong Daxue Xuebao, 2007, 1 (123-128):
  • [9] Multi-variable instruments
    Control Instrum, 9 (47):
  • [10] Using principal component analysis and correspondence analysis for estimation in latent variable models
    Lynn, HS
    McCulloch, CE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (450) : 561 - 572