Plant responses to plant growth-promoting rhizobacteria

被引:0
|
作者
L. C. van Loon
机构
[1] Utrecht University,Department of Biology, Section Phytopathology, Institute of Environmental Biology, Faculty of Science
来源
European Journal of Plant Pathology | 2007年 / 119卷
关键词
Arabidopsis; Disease suppression; Induced systemic resistance; Plant growth promotion; Signal transduction; Systemic acquired resistance;
D O I
暂无
中图分类号
学科分类号
摘要
Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant. Several rhizobacterial strains have been shown to act as plant growth-promoting bacteria through both stimulation of growth and induced systemic resistance (ISR), but it is not clear in how far both mechanisms are connected. Induced resistance is manifested as a reduction of the number of diseased plants or in disease severity upon subsequent infection by a pathogen. Such reduced disease susceptibility can be local or systemic, result from developmental or environmental factors and depend on multiple mechanisms. The spectrum of diseases to which PGPR-elicited ISR confers enhanced resistance overlaps partly with that of pathogen-induced systemic acquired resistance (SAR). Both ISR and SAR represent a state of enhanced basal resistance of the plant that depends on the signalling compounds jasmonic acid and salicylic acid, respectively, and pathogens are differentially sensitive to the resistances activated by each of these signalling pathways. Root-colonizing Pseudomonas bacteria have been shown to alter plant gene expression in roots and leaves to different extents, indicative of recognition of one or more bacterial determinants by specific plant receptors. Conversely, plants can alter root exudation and secrete compounds that interfere with quorum sensing (QS) regulation in the bacteria. Such two-way signalling resembles the interaction of root-nodulating Rhizobia with legumes and between mycorrhizal fungi and roots of the majority of plant species. Although ISR-eliciting rhizobacteria can induce typical early defence-related responses in cell suspensions, in plants they do not necessarily activate defence-related gene expression. Instead, they appear to act through priming of effective resistance mechanisms, as reflected by earlier and stronger defence reactions once infection occurs.
引用
收藏
页码:243 / 254
页数:11
相关论文
共 50 条
  • [1] Plant responses to plant growth-promoting rhizobacteria
    van Loon, L. C.
    EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2007, 119 (03) : 243 - 254
  • [2] Stress mitigation strategies of plant growth-promoting rhizo-bacteria: Plant growth-promoting rhizobacteria mechanisms
    Sharma, Vriti
    Singh, Aakriti
    Sharma, Diksha
    Sharma, Aashima
    Phogat, Sarika
    Chakraborty, Navjyoti
    Chatterjee, Sayan
    Purty, Ram Singh
    PLANT SCIENCE TODAY, 2021, 8 : 25 - 32
  • [3] Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
    Bhattacharyya, P. N.
    Jha, D. K.
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2012, 28 (04) : 1327 - 1350
  • [4] Induced systemic resistance by plant growth-promoting rhizobacteria
    Pieterse, CMJ
    Van Pelt, JA
    Verhagen, BWM
    Ton, J
    Van Wees, SCM
    Léon-Kloosterziel, KM
    Van Loon, LC
    SYMBIOSIS, 2003, 35 (1-3) : 39 - 54
  • [5] Characterization of Selected Plant Growth-Promoting Rhizobacteria and Their Non-Host Growth Promotion Effects
    Fan, Di
    Smith, Donald L.
    MICROBIOLOGY SPECTRUM, 2021, 9 (01): : 1 - 20
  • [6] Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents
    Beneduzi, Anelise
    Ambrosini, Adriana
    Passaglia, Luciane M. P.
    GENETICS AND MOLECULAR BIOLOGY, 2012, 35 (04) : 1044 - 1051
  • [7] An Insight into Plant Growth-Promoting Rhizobacteria-Mediated Mitigation of Stresses in Plant
    Borah, Palakshi
    Gogoi, Nirmali
    Asad, Saeed Ahmad
    Rabha, Aparna Jyoti
    Farooq, Muhammad
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (05) : 3229 - 3256
  • [8] Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR)
    Santoyo, Gustavo
    Urtis-Flores, Carlos Alberto
    Loeza-Lara, Pedro Damian
    del Carmen Orozco-Mosqueda, Ma.
    Glick, Bernard R.
    BIOLOGY-BASEL, 2021, 10 (06):
  • [9] The Interactions of Rhizodeposits with Plant Growth-Promoting Rhizobacteria in the Rhizosphere: A Review
    Hassan, Mohammad K.
    McInroy, John A.
    Kloepper, Joseph W.
    AGRICULTURE-BASEL, 2019, 9 (07):
  • [10] Genetic Diversity of Cultivable Plant Growth-Promoting Rhizobacteria in Korea
    Kim, Won-Il
    Cho, Won Kyong
    Kim, Su-Nam
    Chu, Hyosub
    Ryu, Kyoung-Yul
    Yun, Jong-Chul
    Park, Chang-Seuk
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 21 (08) : 777 - 790