Efficient algorithms for computing one or two discrete centers hitting a set of line segments

被引:0
作者
Xiaozhou He
Zhihui Liu
Bing Su
Yinfeng Xu
Feifeng Zheng
Binhai Zhu
机构
[1] Sichuan University,Business School
[2] Shandong Technology and Business University,School of Computer Science and Technology
[3] Xi’an Technological University,School of Economics and Management
[4] State Key Lab for Manufacturing Systems Engineering,Glorious Sun School of Business and Management
[5] Donghua University,Gianforte School of Computing
[6] Montana State University,undefined
来源
Journal of Combinatorial Optimization | 2019年 / 37卷
关键词
One or two discrete centers problem; Hit line segments; Computational geometry;
D O I
暂无
中图分类号
学科分类号
摘要
Given the scheduling model of bike-sharing, we consider the problem of hitting a set of n axis-parallel line segments in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} by a square or an ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty $$\end{document}-circle (and two squares, or two ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty $$\end{document}-circles) whose center(s) must lie on some line segment(s) such that the (maximum) edge length of the square(s) is minimized. Under a different tree model, we consider (virtual) hitting circles whose centers must lie on some tree edges with similar minmax-objectives (with the distance between a center to a target segment being the shortest path length between them). To be more specific, we consider the cases when one needs to compute one (and two) centers on some edge(s) of a tree with m edges, where n target segments must be hit, and the objective is to minimize the maximum path length from the target segments to the nearer center(s). We give three linear-time algorithms and an O(n2logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2\log n)$$\end{document} algorithm for the four problems in consideration.
引用
收藏
页码:1408 / 1423
页数:15
相关论文
共 14 条
  • [1] Agarwal PK(1998)The discrete 2-center problem Discrete Comput Geom 20 287-305
  • [2] Sharir M(1999)On the rectangular p-center problem More planar two-center algorithms. Comput Geom 13 189-198
  • [3] Welzl E(1987)An approximation algorithm for k-center problem on a convex polygon Naval Res Log (NRL) 34 229-234
  • [4] Chan TM(2014)Faster construction of planar two-centers J Comb Optim 27 504-518
  • [5] Drezner Z(1997)A simple linear algorithm for computing rectilinear 3-centers SODA 97 131-138
  • [6] Du H(2005)Discrete rectilinear 2-center problems Comput Geom 31 150-165
  • [7] Xu Y(2000)Linear-time algorithms for linear programming in Comput Geom 15 203-214
  • [8] Eppstein D(1983) and related problems SIAM J Comput 12 759-776
  • [9] Hoffmann M(1997)A near-linear algorithm for the planar 2-center problem Discrete Comput Geom 18 125-134
  • [10] Katz MJ(undefined)undefined undefined undefined undefined-undefined